xref: /rk3399_ARM-atf/plat/nxp/soc-ls1043a/soc.c (revision 6e2fe623fbbf299b4584bc202520f60955633077)
1 /*
2  * Copyright 2018-2021, 2025 NXP
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <caam.h>
11 #include <cassert.h>
12 #include <cci.h>
13 #include <common/debug.h>
14 #include <dcfg.h>
15 #ifdef I2C_INIT
16 #include <i2c.h>
17 #endif
18 #include <lib/mmio.h>
19 #include <lib/xlat_tables/xlat_tables_v2.h>
20 #include <ls_interconnect.h>
21 #ifdef POLICY_FUSE_PROVISION
22 #include <nxp_gpio.h>
23 #endif
24 #include <nxp_smmu.h>
25 #include <nxp_timer.h>
26 #include <plat_console.h>
27 #include <plat_gic.h>
28 #include <plat_tzc380.h>
29 #include <scfg.h>
30 #if defined(NXP_SFP_ENABLED)
31 #include <sfp.h>
32 #endif
33 #if TRUSTED_BOARD_BOOT
34 #include <snvs.h>
35 #endif
36 
37 #include <errata.h>
38 #include <ns_access.h>
39 #ifdef CONFIG_OCRAM_ECC_EN
40 #include <ocram.h>
41 #endif
42 #include <plat_common.h>
43 #include <platform_def.h>
44 #include <soc.h>
45 
46 static dcfg_init_info_t dcfg_init_data = {
47 			.g_nxp_dcfg_addr = NXP_DCFG_ADDR,
48 			.nxp_sysclk_freq = NXP_SYSCLK_FREQ,
49 			.nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
50 			.nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
51 		};
52 
53 
54 /* Function to return the SoC SYS CLK */
55 unsigned int get_sys_clk(void)
56 {
57 	return NXP_SYSCLK_FREQ;
58 }
59 
60 /*
61  * Function returns the base counter frequency
62  * after reading the first entry at CNTFID0 (0x20 offset).
63  *
64  * Function is used by:
65  *   1. ARM common code for PSCI management.
66  *   2. ARM Generic Timer init.
67  *
68  */
69 unsigned int plat_get_syscnt_freq2(void)
70 {
71 	unsigned int counter_base_frequency;
72 
73 	counter_base_frequency = get_sys_clk()/4;
74 
75 	return counter_base_frequency;
76 }
77 
78 #ifdef IMAGE_BL2
79 
80 static struct soc_type soc_list[] =  {
81 	SOC_ENTRY(LS1023A, LS1023A, 1, 2),
82 	SOC_ENTRY(LS1023AE, LS1023AE, 1, 2),
83 	SOC_ENTRY(LS1023A_P23, LS1023A_P23, 1, 2),
84 	SOC_ENTRY(LS1023AE_P23, LS1023AE_P23, 1, 2),
85 	SOC_ENTRY(LS1043A, LS1043A, 1, 4),
86 	SOC_ENTRY(LS1043AE, LS1043AE, 1, 4),
87 	SOC_ENTRY(LS1043A_P23, LS1043A_P23, 1, 4),
88 	SOC_ENTRY(LS1043AE_P23, LS1043AE_P23, 1, 4),
89 };
90 
91 #ifdef POLICY_FUSE_PROVISION
92 static gpio_init_info_t gpio_init_data = {
93 	.gpio1_base_addr = NXP_GPIO1_ADDR,
94 	.gpio2_base_addr = NXP_GPIO2_ADDR,
95 	.gpio3_base_addr = NXP_GPIO3_ADDR,
96 	.gpio4_base_addr = NXP_GPIO4_ADDR,
97 };
98 #endif
99 
100 /*
101  * Function to set the base counter frequency at
102  * the first entry of the Frequency Mode Table,
103  * at CNTFID0 (0x20 offset).
104  *
105  * Set the value of the pirmary core register cntfrq_el0.
106  */
107 static void set_base_freq_CNTFID0(void)
108 {
109 	/*
110 	 * Below register specifies the base frequency of the system counter.
111 	 * As per NXP Board Manuals:
112 	 * The system counter always works with SYS_REF_CLK/4 frequency clock.
113 	 *
114 	 */
115 	unsigned int counter_base_frequency = get_sys_clk()/4;
116 
117 	/*
118 	 * Setting the frequency in the Frequency modes table.
119 	 *
120 	 * Note: The value for ls1046ardb board at this offset
121 	 *       is not RW as stated. This offset have the
122 	 *       fixed value of 100000400 Hz.
123 	 *
124 	 * The below code line has no effect.
125 	 * Keeping it for other platforms where it has effect.
126 	 */
127 	mmio_write_32(NXP_TIMER_ADDR + CNTFID_OFF, counter_base_frequency);
128 
129 	write_cntfrq_el0(counter_base_frequency);
130 }
131 
132 void soc_preload_setup(void)
133 {
134 
135 }
136 
137 /*******************************************************************************
138  * This function implements soc specific erratas
139  * This is called before DDR is initialized or MMU is enabled
140  ******************************************************************************/
141 void soc_early_init(void)
142 {
143 	uint8_t num_clusters, cores_per_cluster;
144 	dram_regions_info_t *dram_regions_info = get_dram_regions_info();
145 
146 #if TRUSTED_BOARD_BOOT
147 	snvs_init(NXP_SNVS_ADDR);
148 #endif
149 
150 #ifdef CONFIG_OCRAM_ECC_EN
151 	ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
152 #endif
153 	dcfg_init(&dcfg_init_data);
154 #ifdef POLICY_FUSE_PROVISION
155 	gpio_init(&gpio_init_data);
156 	sec_init(NXP_CAAM_ADDR);
157 #endif
158 #if LOG_LEVEL > 0
159 	/* Initialize the console to provide early debug support */
160 
161 	plat_console_init(NXP_CONSOLE_ADDR,
162 				NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
163 #endif
164 	set_base_freq_CNTFID0();
165 
166 	/* Enable snooping on SEC read and write transactions */
167 	scfg_setbits32((void *)(NXP_SCFG_ADDR + SCFG_SNPCNFGCR_OFFSET),
168 			SCFG_SNPCNFGCR_SECRDSNP | SCFG_SNPCNFGCR_SECWRSNP);
169 
170 	/*
171 	 * Initialize Interconnect for this cluster during cold boot.
172 	 * No need for locks as no other CPU is active.
173 	 */
174 	cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
175 
176 	/*
177 	 * Enable Interconnect coherency for the primary CPU's cluster.
178 	 */
179 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
180 	plat_ls_interconnect_enter_coherency(num_clusters);
181 
182 	/*
183 	 * Unlock write access for SMMU SMMU_CBn_ACTLR in all Non-secure contexts.
184 	 */
185 	smmu_cache_unlock(NXP_SMMU_ADDR);
186 	INFO("SMMU Cache Unlocking is Configured.\n");
187 
188 #if TRUSTED_BOARD_BOOT
189 	uint32_t mode;
190 
191 	sfp_init(NXP_SFP_ADDR);
192 	/*
193 	 * For secure boot disable SMMU.
194 	 * Later when platform security policy comes in picture,
195 	 * this might get modified based on the policy
196 	 */
197 	if (check_boot_mode_secure(&mode) == true) {
198 		bypass_smmu(NXP_SMMU_ADDR);
199 	}
200 
201 	/*
202 	 * For Mbedtls currently crypto is not supported via CAAM
203 	 * enable it when that support is there. In tbbr.mk
204 	 * the CAAM_INTEG is set as 0.
205 	 */
206 
207 #ifndef MBEDTLS_X509
208 	/* Initialize the crypto accelerator if enabled */
209 	if (is_sec_enabled() == false) {
210 		INFO("SEC is disabled.\n");
211 	} else {
212 		sec_init(NXP_CAAM_ADDR);
213 	}
214 #endif
215 #elif defined(POLICY_FUSE_PROVISION)
216 	gpio_init(&gpio_init_data);
217 	sfp_init(NXP_SFP_ADDR);
218 	sec_init(NXP_CAAM_ADDR);
219 #endif
220 
221 	soc_errata();
222 
223 	/*
224 	 * Initialize system level generic timer for Layerscape Socs.
225 	 */
226 	delay_timer_init(NXP_TIMER_ADDR);
227 
228 #ifdef DDR_INIT
229 	i2c_init(NXP_I2C_ADDR);
230 	dram_regions_info->total_dram_size = init_ddr();
231 #endif
232 }
233 
234 void soc_bl2_prepare_exit(void)
235 {
236 #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
237 	set_sfp_wr_disable();
238 #endif
239 }
240 
241 /*****************************************************************************
242  * This function returns the boot device based on RCW_SRC
243  ****************************************************************************/
244 enum boot_device get_boot_dev(void)
245 {
246 	enum boot_device src = BOOT_DEVICE_NONE;
247 	uint32_t porsr1;
248 	uint32_t rcw_src, val;
249 
250 	porsr1 = read_reg_porsr1();
251 
252 	rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
253 
254 	val = rcw_src & RCW_SRC_NAND_MASK;
255 
256 	if (val == RCW_SRC_NAND_VAL) {
257 		val = rcw_src & NAND_RESERVED_MASK;
258 		if ((val != NAND_RESERVED_1) && (val != NAND_RESERVED_2)) {
259 			src = BOOT_DEVICE_IFC_NAND;
260 			INFO("RCW BOOT SRC is IFC NAND\n");
261 		}
262 	} else {
263 		/* RCW SRC NOR */
264 		val = rcw_src & RCW_SRC_NOR_MASK;
265 		if (val == NOR_8B_VAL || val == NOR_16B_VAL) {
266 			src = BOOT_DEVICE_IFC_NOR;
267 			INFO("RCW BOOT SRC is IFC NOR\n");
268 		} else {
269 			switch (rcw_src) {
270 			case QSPI_VAL1:
271 			case QSPI_VAL2:
272 				src = BOOT_DEVICE_QSPI;
273 				INFO("RCW BOOT SRC is QSPI\n");
274 				break;
275 			case SD_VAL:
276 				src = BOOT_DEVICE_EMMC;
277 				INFO("RCW BOOT SRC is SD/EMMC\n");
278 				break;
279 			default:
280 				src = BOOT_DEVICE_NONE;
281 			}
282 		}
283 	}
284 
285 	return src;
286 }
287 
288 /* This function sets up access permissions on memory regions */
289 void soc_mem_access(void)
290 {
291 	struct tzc380_reg tzc380_reg_list[MAX_NUM_TZC_REGION];
292 	int dram_idx, index = 0U;
293 	dram_regions_info_t *info_dram_regions = get_dram_regions_info();
294 
295 	for (dram_idx = 0U; dram_idx < info_dram_regions->num_dram_regions;
296 	     dram_idx++) {
297 		if (info_dram_regions->region[dram_idx].size == 0) {
298 			ERROR("DDR init failure, or");
299 			ERROR("DRAM regions not populated correctly.\n");
300 			break;
301 		}
302 
303 		index = populate_tzc380_reg_list(tzc380_reg_list,
304 				dram_idx, index,
305 				info_dram_regions->region[dram_idx].addr,
306 				info_dram_regions->region[dram_idx].size,
307 				NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
308 	}
309 
310 	mem_access_setup(NXP_TZC_ADDR, index, tzc380_reg_list);
311 
312 	/* Configure CSU secure access register to disable TZASC bypass mux */
313 	mmio_write_32((uintptr_t)(NXP_CSU_ADDR +
314 				CSU_SEC_ACCESS_REG_OFFSET),
315 			bswap32(TZASC_BYPASS_MUX_DISABLE));
316 }
317 
318 
319 #else
320 const unsigned char _power_domain_tree_desc[] = {1, 1, 4};
321 
322 CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
323 		assert_invalid_ls1043_cluster_count);
324 
325 /* This function returns the SoC topology */
326 const unsigned char *plat_get_power_domain_tree_desc(void)
327 {
328 
329 	return _power_domain_tree_desc;
330 }
331 
332 /*
333  * This function returns the core count within the cluster corresponding to
334  * `mpidr`.
335  */
336 unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
337 {
338 	return CORES_PER_CLUSTER;
339 }
340 
341 void soc_early_platform_setup2(void)
342 {
343 	dcfg_init(&dcfg_init_data);
344 	/* Initialize system level generic timer for Socs */
345 	delay_timer_init(NXP_TIMER_ADDR);
346 
347 #if LOG_LEVEL > 0
348 	/* Initialize the console to provide early debug support */
349 	plat_console_init(NXP_CONSOLE_ADDR,
350 				NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
351 #endif
352 }
353 
354 /*
355  * For LS1043a rev1.0, GIC base address align with 4k.
356  * For LS1043a rev1.1, if DCFG_GIC400_ALIGN[GIC_ADDR_BIT]
357  * is set, GIC base address align with 4K, or else align
358  * with 64k.
359  */
360 void get_gic_offset(uint32_t *gicc_base, uint32_t *gicd_base)
361 {
362 	uint32_t *ccsr_svr = (uint32_t *)(NXP_DCFG_ADDR + DCFG_SVR_OFFSET);
363 	uint32_t *gic_align = (uint32_t *)(NXP_SCFG_ADDR +
364 					   SCFG_GIC400_ADDR_ALIGN_OFFSET);
365 	uint32_t val;
366 
367 	val = be32toh(mmio_read_32((uintptr_t)ccsr_svr));
368 
369 	if ((val & 0xff) == REV1_1) {
370 		val = be32toh(mmio_read_32((uintptr_t)gic_align));
371 		if (val & (1L << GIC_ADDR_BIT)) {
372 			*gicc_base = NXP_GICC_4K_ADDR;
373 			*gicd_base = NXP_GICD_4K_ADDR;
374 		} else {
375 			*gicc_base = NXP_GICC_64K_ADDR;
376 			*gicd_base = NXP_GICD_64K_ADDR;
377 		}
378 	} else {
379 		*gicc_base = NXP_GICC_4K_ADDR;
380 		*gicd_base = NXP_GICD_4K_ADDR;
381 	}
382 }
383 
384 void soc_platform_setup(void)
385 {
386 	/* Initialize the GIC driver, cpu and distributor interfaces */
387 	static uint32_t target_mask_array[PLATFORM_CORE_COUNT];
388 	/*
389 	 * On a GICv2 system, the Group 1 secure interrupts are treated
390 	 * as Group 0 interrupts.
391 	 */
392 	static interrupt_prop_t ls_interrupt_props[] = {
393 		PLAT_LS_G1S_IRQ_PROPS(GICV2_INTR_GROUP0),
394 		PLAT_LS_G0_IRQ_PROPS(GICV2_INTR_GROUP0)
395 	};
396 	static uint32_t gicc_base, gicd_base;
397 
398 	get_gic_offset(&gicc_base, &gicd_base);
399 	plat_ls_gic_driver_init(gicd_base, gicc_base,
400 				PLATFORM_CORE_COUNT,
401 				ls_interrupt_props,
402 				ARRAY_SIZE(ls_interrupt_props),
403 				target_mask_array);
404 
405 	plat_ls_gic_init();
406 	enable_init_timer();
407 }
408 
409 /* This function initializes the soc from the BL31 module */
410 void soc_init(void)
411 {
412 	 /* low-level init of the soc */
413 	soc_init_lowlevel();
414 	_init_global_data();
415 	soc_init_percpu();
416 	_initialize_psci();
417 
418 	/*
419 	 * Initialize the interconnect during cold boot.
420 	 * No need for locks as no other CPU is active.
421 	 */
422 	cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
423 
424 	/*
425 	 * Enable coherency in interconnect for the primary CPU's cluster.
426 	 * Earlier bootloader stages might already do this but we can't
427 	 * assume so. No harm in executing this code twice.
428 	 */
429 	cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr()));
430 
431 	/* Init CSU to enable non-secure access to peripherals */
432 	enable_layerscape_ns_access(ns_dev, ARRAY_SIZE(ns_dev), NXP_CSU_ADDR);
433 
434 	/* Initialize the crypto accelerator if enabled */
435 	if (is_sec_enabled() == false) {
436 		INFO("SEC is disabled.\n");
437 	} else {
438 		sec_init(NXP_CAAM_ADDR);
439 	}
440 }
441 
442 void soc_runtime_setup(void)
443 {
444 
445 }
446 #endif
447