1 /* 2 * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved. 3 * Copyright (c) 2020, NVIDIA Corporation. All rights reserved. 4 * 5 * SPDX-License-Identifier: BSD-3-Clause 6 */ 7 8 #include <arch_helpers.h> 9 #include <assert.h> 10 #include <cortex_a57.h> 11 #include <common/bl_common.h> 12 #include <common/debug.h> 13 #include <common/interrupt_props.h> 14 #include <drivers/console.h> 15 #include <lib/xlat_tables/xlat_tables_v2.h> 16 #include <drivers/arm/gic_common.h> 17 #include <drivers/arm/gicv2.h> 18 #include <bl31/interrupt_mgmt.h> 19 20 #include <bpmp.h> 21 #include <flowctrl.h> 22 #include <memctrl.h> 23 #include <plat/common/platform.h> 24 #include <security_engine.h> 25 #include <tegra_def.h> 26 #include <tegra_platform.h> 27 #include <tegra_private.h> 28 29 /* sets of MMIO ranges setup */ 30 #define MMIO_RANGE_0_ADDR 0x50000000 31 #define MMIO_RANGE_1_ADDR 0x60000000 32 #define MMIO_RANGE_2_ADDR 0x70000000 33 #define MMIO_RANGE_SIZE 0x200000 34 35 /* 36 * Table of regions to map using the MMU. 37 */ 38 static const mmap_region_t tegra_mmap[] = { 39 MAP_REGION_FLAT(TEGRA_IRAM_BASE, 0x40000, /* 256KB */ 40 MT_DEVICE | MT_RW | MT_SECURE), 41 MAP_REGION_FLAT(MMIO_RANGE_0_ADDR, MMIO_RANGE_SIZE, 42 MT_DEVICE | MT_RW | MT_SECURE), 43 MAP_REGION_FLAT(MMIO_RANGE_1_ADDR, MMIO_RANGE_SIZE, 44 MT_DEVICE | MT_RW | MT_SECURE), 45 MAP_REGION_FLAT(MMIO_RANGE_2_ADDR, MMIO_RANGE_SIZE, 46 MT_DEVICE | MT_RW | MT_SECURE), 47 {0} 48 }; 49 50 /******************************************************************************* 51 * Set up the pagetables as per the platform memory map & initialize the MMU 52 ******************************************************************************/ 53 const mmap_region_t *plat_get_mmio_map(void) 54 { 55 /* Add the map region for security engine SE2 */ 56 if (tegra_chipid_is_t210_b01()) { 57 mmap_add_region((uint64_t)TEGRA_SE2_BASE, 58 (uint64_t)TEGRA_SE2_BASE, 59 (uint64_t)TEGRA_SE2_RANGE_SIZE, 60 MT_DEVICE | MT_RW | MT_SECURE); 61 } 62 63 /* MMIO space */ 64 return tegra_mmap; 65 } 66 67 /******************************************************************************* 68 * The Tegra power domain tree has a single system level power domain i.e. a 69 * single root node. The first entry in the power domain descriptor specifies 70 * the number of power domains at the highest power level. 71 ******************************************************************************* 72 */ 73 const unsigned char tegra_power_domain_tree_desc[] = { 74 /* No of root nodes */ 75 1, 76 /* No of clusters */ 77 PLATFORM_CLUSTER_COUNT, 78 /* No of CPU cores - cluster0 */ 79 PLATFORM_MAX_CPUS_PER_CLUSTER, 80 /* No of CPU cores - cluster1 */ 81 PLATFORM_MAX_CPUS_PER_CLUSTER 82 }; 83 84 /******************************************************************************* 85 * This function returns the Tegra default topology tree information. 86 ******************************************************************************/ 87 const unsigned char *plat_get_power_domain_tree_desc(void) 88 { 89 return tegra_power_domain_tree_desc; 90 } 91 92 /******************************************************************************* 93 * Handler to get the System Counter Frequency 94 ******************************************************************************/ 95 unsigned int plat_get_syscnt_freq2(void) 96 { 97 return 19200000; 98 } 99 100 /******************************************************************************* 101 * Maximum supported UART controllers 102 ******************************************************************************/ 103 #define TEGRA210_MAX_UART_PORTS 5 104 105 /******************************************************************************* 106 * This variable holds the UART port base addresses 107 ******************************************************************************/ 108 static uint32_t tegra210_uart_addresses[TEGRA210_MAX_UART_PORTS + 1] = { 109 0, /* undefined - treated as an error case */ 110 TEGRA_UARTA_BASE, 111 TEGRA_UARTB_BASE, 112 TEGRA_UARTC_BASE, 113 TEGRA_UARTD_BASE, 114 TEGRA_UARTE_BASE, 115 }; 116 117 /******************************************************************************* 118 * Enable console corresponding to the console ID 119 ******************************************************************************/ 120 void plat_enable_console(int32_t id) 121 { 122 static console_t uart_console; 123 uint32_t console_clock; 124 125 if ((id > 0) && (id < TEGRA210_MAX_UART_PORTS)) { 126 /* 127 * Reference clock used by the FPGAs is a lot slower. 128 */ 129 if (tegra_platform_is_fpga()) { 130 console_clock = TEGRA_BOOT_UART_CLK_13_MHZ; 131 } else { 132 console_clock = TEGRA_BOOT_UART_CLK_408_MHZ; 133 } 134 135 (void)console_16550_register(tegra210_uart_addresses[id], 136 console_clock, 137 TEGRA_CONSOLE_BAUDRATE, 138 &uart_console); 139 console_set_scope(&uart_console, CONSOLE_FLAG_BOOT | 140 CONSOLE_FLAG_RUNTIME | CONSOLE_FLAG_CRASH); 141 } 142 } 143 144 /******************************************************************************* 145 * Return pointer to the BL31 params from previous bootloader 146 ******************************************************************************/ 147 struct tegra_bl31_params *plat_get_bl31_params(void) 148 { 149 return NULL; 150 } 151 152 /******************************************************************************* 153 * Return pointer to the BL31 platform params from previous bootloader 154 ******************************************************************************/ 155 plat_params_from_bl2_t *plat_get_bl31_plat_params(void) 156 { 157 return NULL; 158 } 159 160 /******************************************************************************* 161 * Handler for early platform setup 162 ******************************************************************************/ 163 void plat_early_platform_setup(void) 164 { 165 const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); 166 uint64_t val; 167 168 /* platform parameter passed by the previous bootloader */ 169 if (plat_params->l2_ecc_parity_prot_dis != 1) { 170 /* Enable ECC Parity Protection for Cortex-A57 CPUs */ 171 val = read_l2ctlr_el1(); 172 val |= (uint64_t)CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT; 173 write_l2ctlr_el1(val); 174 } 175 176 /* Initialize security engine driver */ 177 tegra_se_init(); 178 } 179 180 /* Secure IRQs for Tegra186 */ 181 static const interrupt_prop_t tegra210_interrupt_props[] = { 182 INTR_PROP_DESC(TEGRA_SDEI_SGI_PRIVATE, PLAT_SDEI_CRITICAL_PRI, 183 GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE), 184 INTR_PROP_DESC(TEGRA210_TIMER1_IRQ, PLAT_TEGRA_WDT_PRIO, 185 GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE), 186 INTR_PROP_DESC(TEGRA210_WDT_CPU_LEGACY_FIQ, PLAT_TEGRA_WDT_PRIO, 187 GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE), 188 }; 189 190 /******************************************************************************* 191 * Handler for late platform setup 192 ******************************************************************************/ 193 void plat_late_platform_setup(void) 194 { 195 const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); 196 uint64_t sc7entry_end, offset; 197 int ret; 198 uint32_t val; 199 200 /* memmap TZDRAM area containing the SC7 Entry Firmware */ 201 if (plat_params->sc7entry_fw_base && plat_params->sc7entry_fw_size) { 202 203 assert(plat_params->sc7entry_fw_size <= TEGRA_IRAM_A_SIZE); 204 205 /* 206 * Verify that the SC7 entry firmware resides inside the TZDRAM 207 * aperture, _before_ the BL31 code and the start address is 208 * exactly 1MB from BL31 base. 209 */ 210 211 /* sc7entry-fw must be _before_ BL31 base */ 212 assert(plat_params->tzdram_base > plat_params->sc7entry_fw_base); 213 214 sc7entry_end = plat_params->sc7entry_fw_base + 215 plat_params->sc7entry_fw_size; 216 assert(sc7entry_end < plat_params->tzdram_base); 217 218 /* sc7entry-fw start must be exactly 1MB behind BL31 base */ 219 offset = plat_params->tzdram_base - plat_params->sc7entry_fw_base; 220 assert(offset == 0x100000); 221 222 /* secure TZDRAM area */ 223 tegra_memctrl_tzdram_setup(plat_params->sc7entry_fw_base, 224 plat_params->tzdram_size + offset); 225 226 /* power off BPMP processor until SC7 entry */ 227 tegra_fc_bpmp_off(); 228 229 /* memmap SC7 entry firmware code */ 230 ret = mmap_add_dynamic_region(plat_params->sc7entry_fw_base, 231 plat_params->sc7entry_fw_base, 232 plat_params->sc7entry_fw_size, 233 MT_SECURE | MT_RO_DATA); 234 assert(ret == 0); 235 236 /* restrict PMC access to secure world */ 237 val = mmio_read_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE); 238 val |= PMC_SECURITY_EN_BIT; 239 mmio_write_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE, val); 240 } 241 242 if (!tegra_chipid_is_t210_b01()) { 243 /* restrict PMC access to secure world */ 244 val = mmio_read_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE); 245 val |= PMC_SECURITY_EN_BIT; 246 mmio_write_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE, val); 247 } 248 } 249 250 /******************************************************************************* 251 * Initialize the GIC and SGIs 252 ******************************************************************************/ 253 void plat_gic_setup(void) 254 { 255 tegra_gic_setup(tegra210_interrupt_props, ARRAY_SIZE(tegra210_interrupt_props)); 256 tegra_gic_init(); 257 258 /* Enable handling for FIQs */ 259 tegra_fiq_handler_setup(); 260 261 /* 262 * Enable routing watchdog FIQs from the flow controller to 263 * the GICD. 264 */ 265 tegra_fc_enable_fiq_to_ccplex_routing(); 266 } 267 /******************************************************************************* 268 * Handler to indicate support for System Suspend 269 ******************************************************************************/ 270 bool plat_supports_system_suspend(void) 271 { 272 const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); 273 274 /* 275 * sc7entry-fw is only supported by Tegra210 SoCs. 276 */ 277 if (!tegra_chipid_is_t210_b01() && (plat_params->sc7entry_fw_base != 0U)) { 278 return true; 279 } else if (tegra_chipid_is_t210_b01()) { 280 return true; 281 } else { 282 return false; 283 } 284 } 285