1 /* 2 * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved. 3 * Copyright (c) 2020, NVIDIA Corporation. All rights reserved. 4 * 5 * SPDX-License-Identifier: BSD-3-Clause 6 */ 7 8 #include <arch_helpers.h> 9 #include <assert.h> 10 #include <cortex_a57.h> 11 #include <common/bl_common.h> 12 #include <common/debug.h> 13 #include <common/interrupt_props.h> 14 #include <drivers/console.h> 15 #include <lib/xlat_tables/xlat_tables_v2.h> 16 #include <drivers/arm/gic_common.h> 17 #include <drivers/arm/gicv2.h> 18 #include <bl31/interrupt_mgmt.h> 19 20 #include <bpmp.h> 21 #include <flowctrl.h> 22 #include <memctrl.h> 23 #include <plat/common/platform.h> 24 #include <security_engine.h> 25 #include <tegra_def.h> 26 #include <tegra_platform.h> 27 #include <tegra_private.h> 28 29 /* sets of MMIO ranges setup */ 30 #define MMIO_RANGE_0_ADDR 0x50000000 31 #define MMIO_RANGE_1_ADDR 0x60000000 32 #define MMIO_RANGE_2_ADDR 0x70000000 33 #define MMIO_RANGE_SIZE 0x200000 34 35 /* 36 * Table of regions to map using the MMU. 37 */ 38 static const mmap_region_t tegra_mmap[] = { 39 MAP_REGION_FLAT(TEGRA_IRAM_BASE, 0x40000, /* 256KB */ 40 MT_DEVICE | MT_RW | MT_SECURE), 41 MAP_REGION_FLAT(MMIO_RANGE_0_ADDR, MMIO_RANGE_SIZE, 42 MT_DEVICE | MT_RW | MT_SECURE), 43 MAP_REGION_FLAT(MMIO_RANGE_1_ADDR, MMIO_RANGE_SIZE, 44 MT_DEVICE | MT_RW | MT_SECURE), 45 MAP_REGION_FLAT(MMIO_RANGE_2_ADDR, MMIO_RANGE_SIZE, 46 MT_DEVICE | MT_RW | MT_SECURE), 47 {0} 48 }; 49 50 /******************************************************************************* 51 * Set up the pagetables as per the platform memory map & initialize the MMU 52 ******************************************************************************/ 53 const mmap_region_t *plat_get_mmio_map(void) 54 { 55 /* Add the map region for security engine SE2 */ 56 if (tegra_chipid_is_t210_b01()) { 57 mmap_add_region((uint64_t)TEGRA_SE2_BASE, 58 (uint64_t)TEGRA_SE2_BASE, 59 (uint64_t)TEGRA_SE2_RANGE_SIZE, 60 MT_DEVICE | MT_RW | MT_SECURE); 61 } 62 63 /* MMIO space */ 64 return tegra_mmap; 65 } 66 67 /******************************************************************************* 68 * The Tegra power domain tree has a single system level power domain i.e. a 69 * single root node. The first entry in the power domain descriptor specifies 70 * the number of power domains at the highest power level. 71 ******************************************************************************* 72 */ 73 const unsigned char tegra_power_domain_tree_desc[] = { 74 /* No of root nodes */ 75 1, 76 /* No of clusters */ 77 PLATFORM_CLUSTER_COUNT, 78 /* No of CPU cores - cluster0 */ 79 PLATFORM_MAX_CPUS_PER_CLUSTER, 80 /* No of CPU cores - cluster1 */ 81 PLATFORM_MAX_CPUS_PER_CLUSTER 82 }; 83 84 /******************************************************************************* 85 * This function returns the Tegra default topology tree information. 86 ******************************************************************************/ 87 const unsigned char *plat_get_power_domain_tree_desc(void) 88 { 89 return tegra_power_domain_tree_desc; 90 } 91 92 /******************************************************************************* 93 * Handler to get the System Counter Frequency 94 ******************************************************************************/ 95 unsigned int plat_get_syscnt_freq2(void) 96 { 97 return 19200000; 98 } 99 100 /******************************************************************************* 101 * Maximum supported UART controllers 102 ******************************************************************************/ 103 #define TEGRA210_MAX_UART_PORTS 5 104 105 /******************************************************************************* 106 * This variable holds the UART port base addresses 107 ******************************************************************************/ 108 static uint32_t tegra210_uart_addresses[TEGRA210_MAX_UART_PORTS + 1] = { 109 0, /* undefined - treated as an error case */ 110 TEGRA_UARTA_BASE, 111 TEGRA_UARTB_BASE, 112 TEGRA_UARTC_BASE, 113 TEGRA_UARTD_BASE, 114 TEGRA_UARTE_BASE, 115 }; 116 117 /******************************************************************************* 118 * Enable console corresponding to the console ID 119 ******************************************************************************/ 120 void plat_enable_console(int32_t id) 121 { 122 static console_t uart_console; 123 uint32_t console_clock; 124 125 if ((id > 0) && (id < TEGRA210_MAX_UART_PORTS)) { 126 /* 127 * Reference clock used by the FPGAs is a lot slower. 128 */ 129 if (tegra_platform_is_fpga()) { 130 console_clock = TEGRA_BOOT_UART_CLK_13_MHZ; 131 } else { 132 console_clock = TEGRA_BOOT_UART_CLK_408_MHZ; 133 } 134 135 (void)console_16550_register(tegra210_uart_addresses[id], 136 console_clock, 137 TEGRA_CONSOLE_BAUDRATE, 138 &uart_console); 139 console_set_scope(&uart_console, CONSOLE_FLAG_BOOT | 140 CONSOLE_FLAG_RUNTIME | CONSOLE_FLAG_CRASH); 141 } 142 } 143 144 /******************************************************************************* 145 * Return pointer to the BL31 params from previous bootloader 146 ******************************************************************************/ 147 struct tegra_bl31_params *plat_get_bl31_params(void) 148 { 149 return NULL; 150 } 151 152 /******************************************************************************* 153 * Return pointer to the BL31 platform params from previous bootloader 154 ******************************************************************************/ 155 plat_params_from_bl2_t *plat_get_bl31_plat_params(void) 156 { 157 return NULL; 158 } 159 160 /******************************************************************************* 161 * Handler for early platform setup 162 ******************************************************************************/ 163 void plat_early_platform_setup(void) 164 { 165 const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); 166 uint64_t val; 167 168 /* Verify chip id is t210 */ 169 assert(tegra_chipid_is_t210()); 170 171 /* 172 * Do initial security configuration to allow DRAM/device access. 173 */ 174 tegra_memctrl_tzdram_setup(plat_params->tzdram_base, 175 (uint32_t)plat_params->tzdram_size); 176 177 /* platform parameter passed by the previous bootloader */ 178 if (plat_params->l2_ecc_parity_prot_dis != 1) { 179 /* Enable ECC Parity Protection for Cortex-A57 CPUs */ 180 val = read_l2ctlr_el1(); 181 val |= (uint64_t)CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT; 182 write_l2ctlr_el1(val); 183 } 184 185 /* Initialize security engine driver */ 186 tegra_se_init(); 187 } 188 189 /* Secure IRQs for Tegra186 */ 190 static const interrupt_prop_t tegra210_interrupt_props[] = { 191 INTR_PROP_DESC(TEGRA_SDEI_SGI_PRIVATE, PLAT_SDEI_CRITICAL_PRI, 192 GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE), 193 INTR_PROP_DESC(TEGRA210_TIMER1_IRQ, PLAT_TEGRA_WDT_PRIO, 194 GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE), 195 INTR_PROP_DESC(TEGRA210_WDT_CPU_LEGACY_FIQ, PLAT_TEGRA_WDT_PRIO, 196 GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE), 197 }; 198 199 /******************************************************************************* 200 * Handler for late platform setup 201 ******************************************************************************/ 202 void plat_late_platform_setup(void) 203 { 204 const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); 205 uint64_t sc7entry_end, offset; 206 int ret; 207 uint32_t val; 208 209 /* memmap TZDRAM area containing the SC7 Entry Firmware */ 210 if (plat_params->sc7entry_fw_base && plat_params->sc7entry_fw_size) { 211 212 assert(plat_params->sc7entry_fw_size <= TEGRA_IRAM_A_SIZE); 213 214 /* 215 * Verify that the SC7 entry firmware resides inside the TZDRAM 216 * aperture, _before_ the BL31 code and the start address is 217 * exactly 1MB from BL31 base. 218 */ 219 220 /* sc7entry-fw must be _before_ BL31 base */ 221 assert(plat_params->tzdram_base > plat_params->sc7entry_fw_base); 222 223 sc7entry_end = plat_params->sc7entry_fw_base + 224 plat_params->sc7entry_fw_size; 225 assert(sc7entry_end < plat_params->tzdram_base); 226 227 /* sc7entry-fw start must be exactly 1MB behind BL31 base */ 228 offset = plat_params->tzdram_base - plat_params->sc7entry_fw_base; 229 assert(offset == 0x100000); 230 231 /* secure TZDRAM area */ 232 tegra_memctrl_tzdram_setup(plat_params->sc7entry_fw_base, 233 plat_params->tzdram_size + offset); 234 235 /* power off BPMP processor until SC7 entry */ 236 tegra_fc_bpmp_off(); 237 238 /* memmap SC7 entry firmware code */ 239 ret = mmap_add_dynamic_region(plat_params->sc7entry_fw_base, 240 plat_params->sc7entry_fw_base, 241 plat_params->sc7entry_fw_size, 242 MT_SECURE | MT_RO_DATA); 243 assert(ret == 0); 244 245 /* restrict PMC access to secure world */ 246 val = mmio_read_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE); 247 val |= PMC_SECURITY_EN_BIT; 248 mmio_write_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE, val); 249 } 250 251 if (!tegra_chipid_is_t210_b01()) { 252 /* restrict PMC access to secure world */ 253 val = mmio_read_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE); 254 val |= PMC_SECURITY_EN_BIT; 255 mmio_write_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE, val); 256 } 257 } 258 259 /******************************************************************************* 260 * Initialize the GIC and SGIs 261 ******************************************************************************/ 262 void plat_gic_setup(void) 263 { 264 tegra_gic_setup(tegra210_interrupt_props, ARRAY_SIZE(tegra210_interrupt_props)); 265 tegra_gic_init(); 266 267 /* Enable handling for FIQs */ 268 tegra_fiq_handler_setup(); 269 270 /* 271 * Enable routing watchdog FIQs from the flow controller to 272 * the GICD. 273 */ 274 tegra_fc_enable_fiq_to_ccplex_routing(); 275 } 276 /******************************************************************************* 277 * Handler to indicate support for System Suspend 278 ******************************************************************************/ 279 bool plat_supports_system_suspend(void) 280 { 281 const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); 282 283 /* 284 * sc7entry-fw is only supported by Tegra210 SoCs. 285 */ 286 if (!tegra_chipid_is_t210_b01() && (plat_params->sc7entry_fw_base != 0U)) { 287 return true; 288 } else if (tegra_chipid_is_t210_b01()) { 289 return true; 290 } else { 291 return false; 292 } 293 } 294 /******************************************************************************* 295 * Platform specific runtime setup. 296 ******************************************************************************/ 297 void plat_runtime_setup(void) 298 { 299 /* 300 * During cold boot, it is observed that the arbitration 301 * bit is set in the Memory controller leading to false 302 * error interrupts in the non-secure world. To avoid 303 * this, clean the interrupt status register before 304 * booting into the non-secure world 305 */ 306 tegra_memctrl_clear_pending_interrupts(); 307 308 /* 309 * During boot, USB3 and flash media (SDMMC/SATA) devices need 310 * access to IRAM. Because these clients connect to the MC and 311 * do not have a direct path to the IRAM, the MC implements AHB 312 * redirection during boot to allow path to IRAM. In this mode 313 * accesses to a programmed memory address aperture are directed 314 * to the AHB bus, allowing access to the IRAM. This mode must be 315 * disabled before we jump to the non-secure world. 316 */ 317 tegra_memctrl_disable_ahb_redirection(); 318 } 319