xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t194/plat_psci_handlers.c (revision e3e5e6617bc06b95ed9207168724daa9e59360b9)
1 /*
2  * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <arch_helpers.h>
13 #include <bpmp_ipc.h>
14 #include <common/bl_common.h>
15 #include <common/debug.h>
16 #include <context.h>
17 #include <drivers/delay_timer.h>
18 #include <denver.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/psci/psci.h>
21 #include <mce.h>
22 #include <mce_private.h>
23 #include <memctrl_v2.h>
24 #include <plat/common/platform.h>
25 #include <se.h>
26 #include <smmu.h>
27 #include <t194_nvg.h>
28 #include <tegra194_private.h>
29 #include <tegra_platform.h>
30 #include <tegra_private.h>
31 
32 extern uint32_t __tegra194_cpu_reset_handler_data,
33 		__tegra194_cpu_reset_handler_end;
34 
35 /* TZDRAM offset for saving SMMU context */
36 #define TEGRA194_SMMU_CTX_OFFSET	16U
37 
38 /* state id mask */
39 #define TEGRA194_STATE_ID_MASK		0xFU
40 /* constants to get power state's wake time */
41 #define TEGRA194_WAKE_TIME_MASK		0x0FFFFFF0U
42 #define TEGRA194_WAKE_TIME_SHIFT	4U
43 /* default core wake mask for CPU_SUSPEND */
44 #define TEGRA194_CORE_WAKE_MASK		0x180cU
45 
46 static struct t19x_psci_percpu_data {
47 	uint32_t wake_time;
48 } __aligned(CACHE_WRITEBACK_GRANULE) t19x_percpu_data[PLATFORM_CORE_COUNT];
49 
50 int32_t tegra_soc_validate_power_state(uint32_t power_state,
51 					psci_power_state_t *req_state)
52 {
53 	uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) &
54 			   TEGRA194_STATE_ID_MASK;
55 	uint32_t cpu = plat_my_core_pos();
56 	int32_t ret = PSCI_E_SUCCESS;
57 
58 	/* save the core wake time (in TSC ticks)*/
59 	t19x_percpu_data[cpu].wake_time = (power_state & TEGRA194_WAKE_TIME_MASK)
60 			<< TEGRA194_WAKE_TIME_SHIFT;
61 
62 	/*
63 	 * Clean t19x_percpu_data[cpu] to DRAM. This needs to be done to ensure
64 	 * that the correct value is read in tegra_soc_pwr_domain_suspend(),
65 	 * which is called with caches disabled. It is possible to read a stale
66 	 * value from DRAM in that function, because the L2 cache is not flushed
67 	 * unless the cluster is entering CC6/CC7.
68 	 */
69 	clean_dcache_range((uint64_t)&t19x_percpu_data[cpu],
70 			sizeof(t19x_percpu_data[cpu]));
71 
72 	/* Sanity check the requested state id */
73 	switch (state_id) {
74 	case PSTATE_ID_CORE_IDLE:
75 
76 		/* Core idle request */
77 		req_state->pwr_domain_state[MPIDR_AFFLVL0] = PLAT_MAX_RET_STATE;
78 		req_state->pwr_domain_state[MPIDR_AFFLVL1] = PSCI_LOCAL_STATE_RUN;
79 		break;
80 
81 	default:
82 		ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
83 		ret = PSCI_E_INVALID_PARAMS;
84 		break;
85 	}
86 
87 	return ret;
88 }
89 
90 int32_t tegra_soc_cpu_standby(plat_local_state_t cpu_state)
91 {
92 	uint32_t cpu = plat_my_core_pos();
93 	mce_cstate_info_t cstate_info = { 0 };
94 
95 	/* Program default wake mask */
96 	cstate_info.wake_mask = TEGRA194_CORE_WAKE_MASK;
97 	cstate_info.update_wake_mask = 1;
98 	mce_update_cstate_info(&cstate_info);
99 
100 	/* Enter CPU idle */
101 	(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
102 				  (uint64_t)TEGRA_NVG_CORE_C6,
103 				  t19x_percpu_data[cpu].wake_time,
104 				  0U);
105 
106 	return PSCI_E_SUCCESS;
107 }
108 
109 int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
110 {
111 	const plat_local_state_t *pwr_domain_state;
112 	uint8_t stateid_afflvl2;
113 	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
114 	uint64_t mc_ctx_base;
115 	uint32_t val;
116 	mce_cstate_info_t sc7_cstate_info = {
117 		.cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6,
118 		.ccplex = (uint32_t)TEGRA_NVG_CG_CG7,
119 		.system = (uint32_t)TEGRA_NVG_SYSTEM_SC7,
120 		.system_state_force = 1U,
121 		.update_wake_mask = 1U,
122 	};
123 	int32_t ret = 0;
124 
125 	/* get the state ID */
126 	pwr_domain_state = target_state->pwr_domain_state;
127 	stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
128 		TEGRA194_STATE_ID_MASK;
129 
130 	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
131 
132 		/* save 'Secure Boot' Processor Feature Config Register */
133 		val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG);
134 		mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val);
135 
136 		/* save MC context */
137 		mc_ctx_base = params_from_bl2->tzdram_base +
138 				tegra194_get_mc_ctx_offset();
139 		tegra_mc_save_context((uintptr_t)mc_ctx_base);
140 
141 		/*
142 		 * Suspend SE, RNG1 and PKA1 only on silcon and fpga,
143 		 * since VDK does not support atomic se ctx save
144 		 */
145 		if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) {
146 			ret = tegra_se_suspend();
147 			assert(ret == 0);
148 		}
149 
150 		/* Prepare for system suspend */
151 		mce_update_cstate_info(&sc7_cstate_info);
152 
153 		do {
154 			val = (uint32_t)mce_command_handler(
155 					(uint32_t)MCE_CMD_IS_SC7_ALLOWED,
156 					(uint32_t)TEGRA_NVG_CORE_C7,
157 					MCE_CORE_SLEEP_TIME_INFINITE,
158 					0U);
159 		} while (val == 0U);
160 
161 		/* Instruct the MCE to enter system suspend state */
162 		ret = mce_command_handler(
163 				(uint64_t)MCE_CMD_ENTER_CSTATE,
164 				(uint64_t)TEGRA_NVG_CORE_C7,
165 				MCE_CORE_SLEEP_TIME_INFINITE,
166 				0U);
167 		assert(ret == 0);
168 
169 		/* set system suspend state for house-keeping */
170 		tegra194_set_system_suspend_entry();
171 	}
172 
173 	return PSCI_E_SUCCESS;
174 }
175 
176 /*******************************************************************************
177  * Helper function to check if this is the last ON CPU in the cluster
178  ******************************************************************************/
179 static bool tegra_last_on_cpu_in_cluster(const plat_local_state_t *states,
180 			uint32_t ncpu)
181 {
182 	plat_local_state_t target;
183 	bool last_on_cpu = true;
184 	uint32_t num_cpus = ncpu, pos = 0;
185 
186 	do {
187 		target = states[pos];
188 		if (target != PLAT_MAX_OFF_STATE) {
189 			last_on_cpu = false;
190 		}
191 		--num_cpus;
192 		pos++;
193 	} while (num_cpus != 0U);
194 
195 	return last_on_cpu;
196 }
197 
198 /*******************************************************************************
199  * Helper function to get target power state for the cluster
200  ******************************************************************************/
201 static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states,
202 			uint32_t ncpu)
203 {
204 	uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK;
205 	plat_local_state_t target = states[core_pos];
206 	mce_cstate_info_t cstate_info = { 0 };
207 
208 	/* CPU off */
209 	if (target == PLAT_MAX_OFF_STATE) {
210 
211 		/* Enable cluster powerdn from last CPU in the cluster */
212 		if (tegra_last_on_cpu_in_cluster(states, ncpu)) {
213 
214 			/* Enable CC6 state and turn off wake mask */
215 			cstate_info.cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6;
216 			cstate_info.ccplex = (uint32_t)TEGRA_NVG_CG_CG7;
217 			cstate_info.system_state_force = 1;
218 			cstate_info.update_wake_mask = 1U;
219 			mce_update_cstate_info(&cstate_info);
220 
221 		} else {
222 
223 			/* Turn off wake_mask */
224 			cstate_info.update_wake_mask = 1U;
225 			mce_update_cstate_info(&cstate_info);
226 			target = PSCI_LOCAL_STATE_RUN;
227 		}
228 	}
229 
230 	return target;
231 }
232 
233 /*******************************************************************************
234  * Platform handler to calculate the proper target power level at the
235  * specified affinity level
236  ******************************************************************************/
237 plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl,
238 					     const plat_local_state_t *states,
239 					     uint32_t ncpu)
240 {
241 	plat_local_state_t target = PSCI_LOCAL_STATE_RUN;
242 	uint32_t cpu = plat_my_core_pos();
243 
244 	/* System Suspend */
245 	if ((lvl == (uint32_t)MPIDR_AFFLVL2) && (states[cpu] == PSTATE_ID_SOC_POWERDN)) {
246 		target = PSTATE_ID_SOC_POWERDN;
247 	}
248 
249 	/* CPU off, CPU suspend */
250 	if (lvl == (uint32_t)MPIDR_AFFLVL1) {
251 		target = tegra_get_afflvl1_pwr_state(states, ncpu);
252 	}
253 
254 	/* target cluster/system state */
255 	return target;
256 }
257 
258 int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state)
259 {
260 	const plat_local_state_t *pwr_domain_state =
261 		target_state->pwr_domain_state;
262 	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
263 	uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
264 		TEGRA194_STATE_ID_MASK;
265 	uint64_t src_len_in_bytes = (uintptr_t)&__BL31_END__ - (uintptr_t)BL31_BASE;
266 	uint64_t val;
267 	int32_t ret = PSCI_E_SUCCESS;
268 
269 	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
270 		val = params_from_bl2->tzdram_base +
271 		      tegra194_get_cpu_reset_handler_size();
272 
273 		/* initialise communication channel with BPMP */
274 		ret = tegra_bpmp_ipc_init();
275 		assert(ret == 0);
276 
277 		/* Enable SE clock before SE context save */
278 		ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE);
279 		assert(ret == 0);
280 
281 		/*
282 		 * It is very unlikely that the BL31 image would be
283 		 * bigger than 2^32 bytes
284 		 */
285 		assert(src_len_in_bytes < UINT32_MAX);
286 
287 		if (tegra_se_calculate_save_sha256(BL31_BASE,
288 					(uint32_t)src_len_in_bytes) != 0) {
289 			ERROR("Hash calculation failed. Reboot\n");
290 			(void)tegra_soc_prepare_system_reset();
291 		}
292 
293 		/*
294 		 * The TZRAM loses power when we enter system suspend. To
295 		 * allow graceful exit from system suspend, we need to copy
296 		 * BL3-1 over to TZDRAM.
297 		 */
298 		val = params_from_bl2->tzdram_base +
299 		      tegra194_get_cpu_reset_handler_size();
300 		memcpy((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE,
301 		       src_len_in_bytes);
302 
303 		/* Disable SE clock after SE context save */
304 		ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE);
305 		assert(ret == 0);
306 	}
307 
308 	return ret;
309 }
310 
311 int32_t tegra_soc_pwr_domain_suspend_pwrdown_early(const psci_power_state_t *target_state)
312 {
313 	return PSCI_E_NOT_SUPPORTED;
314 }
315 
316 int32_t tegra_soc_pwr_domain_on(u_register_t mpidr)
317 {
318 	uint64_t target_cpu = mpidr & MPIDR_CPU_MASK;
319 	uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >>
320 			MPIDR_AFFINITY_BITS;
321 	int32_t ret = 0;
322 
323 	if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) {
324 		ERROR("%s: unsupported CPU (0x%lx)\n", __func__ , mpidr);
325 		return PSCI_E_NOT_PRESENT;
326 	}
327 
328 	/* construct the target CPU # */
329 	target_cpu += (target_cluster << 1U);
330 
331 	ret = mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U);
332 	if (ret < 0) {
333 		return PSCI_E_DENIED;
334 	}
335 
336 	return PSCI_E_SUCCESS;
337 }
338 
339 int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
340 {
341 	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
342 	uint8_t enable_ccplex_lock_step = params_from_bl2->enable_ccplex_lock_step;
343 	uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL];
344 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
345 	uint64_t actlr_elx;
346 
347 	/*
348 	 * Reset power state info for CPUs when onlining, we set
349 	 * deepest power when offlining a core but that may not be
350 	 * requested by non-secure sw which controls idle states. It
351 	 * will re-init this info from non-secure software when the
352 	 * core come online.
353 	 */
354 	actlr_elx = read_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1));
355 	actlr_elx &= ~DENVER_CPU_PMSTATE_MASK;
356 	actlr_elx |= DENVER_CPU_PMSTATE_C1;
357 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
358 
359 	/*
360 	 * Check if we are exiting from deep sleep and restore SE
361 	 * context if we are.
362 	 */
363 	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
364 
365 #if ENABLE_STRICT_CHECKING_MODE
366 		/*
367 		 * Enable strict checking after programming the GSC for
368 		 * enabling TZSRAM and TZDRAM
369 		 */
370 		mce_enable_strict_checking();
371 #endif
372 
373 		/* Init SMMU */
374 		tegra_smmu_init();
375 
376 		/* Resume SE, RNG1 and PKA1 */
377 		tegra_se_resume();
378 
379 		/*
380 		 * Program XUSB STREAMIDs
381 		 * ======================
382 		 * T19x XUSB has support for XUSB virtualization. It will
383 		 * have one physical function (PF) and four Virtual functions
384 		 * (VF)
385 		 *
386 		 * There were below two SIDs for XUSB until T186.
387 		 * 1) #define TEGRA_SID_XUSB_HOST    0x1bU
388 		 * 2) #define TEGRA_SID_XUSB_DEV    0x1cU
389 		 *
390 		 * We have below four new SIDs added for VF(s)
391 		 * 3) #define TEGRA_SID_XUSB_VF0    0x5dU
392 		 * 4) #define TEGRA_SID_XUSB_VF1    0x5eU
393 		 * 5) #define TEGRA_SID_XUSB_VF2    0x5fU
394 		 * 6) #define TEGRA_SID_XUSB_VF3    0x60U
395 		 *
396 		 * When virtualization is enabled then we have to disable SID
397 		 * override and program above SIDs in below newly added SID
398 		 * registers in XUSB PADCTL MMIO space. These registers are
399 		 * TZ protected and so need to be done in ATF.
400 		 *
401 		 * a) #define XUSB_PADCTL_HOST_AXI_STREAMID_PF_0 (0x136cU)
402 		 * b) #define XUSB_PADCTL_DEV_AXI_STREAMID_PF_0  (0x139cU)
403 		 * c) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_0 (0x1370U)
404 		 * d) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_1 (0x1374U)
405 		 * e) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_2 (0x1378U)
406 		 * f) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_3 (0x137cU)
407 		 *
408 		 * This change disables SID override and programs XUSB SIDs
409 		 * in above registers to support both virtualization and
410 		 * non-virtualization platforms
411 		 */
412 		if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) {
413 
414 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
415 				XUSB_PADCTL_HOST_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_HOST);
416 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
417 				XUSB_PADCTL_HOST_AXI_STREAMID_VF_0, TEGRA_SID_XUSB_VF0);
418 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
419 				XUSB_PADCTL_HOST_AXI_STREAMID_VF_1, TEGRA_SID_XUSB_VF1);
420 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
421 				XUSB_PADCTL_HOST_AXI_STREAMID_VF_2, TEGRA_SID_XUSB_VF2);
422 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
423 				XUSB_PADCTL_HOST_AXI_STREAMID_VF_3, TEGRA_SID_XUSB_VF3);
424 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
425 				XUSB_PADCTL_DEV_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_DEV);
426 		}
427 	}
428 
429 	/*
430 	 * Enable dual execution optimized translations for all ELx.
431 	 */
432 	if (enable_ccplex_lock_step != 0U) {
433 		actlr_elx = read_actlr_el3();
434 		actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL3;
435 		write_actlr_el3(actlr_elx);
436 
437 		actlr_elx = read_actlr_el2();
438 		actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL2;
439 		write_actlr_el2(actlr_elx);
440 
441 		actlr_elx = read_actlr_el1();
442 		actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL1;
443 		write_actlr_el1(actlr_elx);
444 	}
445 
446 	return PSCI_E_SUCCESS;
447 }
448 
449 int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
450 {
451 	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
452 	int32_t ret = 0;
453 
454 	(void)target_state;
455 
456 	/* Disable Denver's DCO operations */
457 	if (impl == DENVER_IMPL) {
458 		denver_disable_dco();
459 	}
460 
461 	/* Turn off CPU */
462 	ret = mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
463 			(uint64_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
464 	assert(ret == 0);
465 
466 	return PSCI_E_SUCCESS;
467 }
468 
469 __dead2 void tegra_soc_prepare_system_off(void)
470 {
471 	/* System power off */
472 	mce_system_shutdown();
473 
474 	wfi();
475 
476 	/* wait for the system to power down */
477 	for (;;) {
478 		;
479 	}
480 }
481 
482 int32_t tegra_soc_prepare_system_reset(void)
483 {
484 	/* System reboot */
485 	mce_system_reboot();
486 
487 	return PSCI_E_SUCCESS;
488 }
489