xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t194/plat_psci_handlers.c (revision 3443a7027d78a9ccebc6940f0a69300ec7c1ed44)
1 /*
2  * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <arch_helpers.h>
13 #include <bpmp_ipc.h>
14 #include <common/bl_common.h>
15 #include <common/debug.h>
16 #include <context.h>
17 #include <drivers/delay_timer.h>
18 #include <denver.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/psci/psci.h>
21 #include <mce.h>
22 #include <mce_private.h>
23 #include <memctrl_v2.h>
24 #include <plat/common/platform.h>
25 #include <se.h>
26 #include <smmu.h>
27 #include <t194_nvg.h>
28 #include <tegra194_private.h>
29 #include <tegra_platform.h>
30 #include <tegra_private.h>
31 
32 extern uint32_t __tegra194_cpu_reset_handler_data,
33 		__tegra194_cpu_reset_handler_end;
34 
35 /* TZDRAM offset for saving SMMU context */
36 #define TEGRA194_SMMU_CTX_OFFSET	16U
37 
38 /* state id mask */
39 #define TEGRA194_STATE_ID_MASK		0xFU
40 /* constants to get power state's wake time */
41 #define TEGRA194_WAKE_TIME_MASK		0x0FFFFFF0U
42 #define TEGRA194_WAKE_TIME_SHIFT	4U
43 /* default core wake mask for CPU_SUSPEND */
44 #define TEGRA194_CORE_WAKE_MASK		0x180cU
45 
46 static struct t19x_psci_percpu_data {
47 	uint32_t wake_time;
48 } __aligned(CACHE_WRITEBACK_GRANULE) t19x_percpu_data[PLATFORM_CORE_COUNT];
49 
50 int32_t tegra_soc_validate_power_state(uint32_t power_state,
51 					psci_power_state_t *req_state)
52 {
53 	uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) &
54 			   TEGRA194_STATE_ID_MASK;
55 	uint32_t cpu = plat_my_core_pos();
56 	int32_t ret = PSCI_E_SUCCESS;
57 
58 	/* save the core wake time (in TSC ticks)*/
59 	t19x_percpu_data[cpu].wake_time = (power_state & TEGRA194_WAKE_TIME_MASK)
60 			<< TEGRA194_WAKE_TIME_SHIFT;
61 
62 	/*
63 	 * Clean t19x_percpu_data[cpu] to DRAM. This needs to be done to ensure
64 	 * that the correct value is read in tegra_soc_pwr_domain_suspend(),
65 	 * which is called with caches disabled. It is possible to read a stale
66 	 * value from DRAM in that function, because the L2 cache is not flushed
67 	 * unless the cluster is entering CC6/CC7.
68 	 */
69 	clean_dcache_range((uint64_t)&t19x_percpu_data[cpu],
70 			sizeof(t19x_percpu_data[cpu]));
71 
72 	/* Sanity check the requested state id */
73 	switch (state_id) {
74 	case PSTATE_ID_CORE_IDLE:
75 
76 		/* Core idle request */
77 		req_state->pwr_domain_state[MPIDR_AFFLVL0] = PLAT_MAX_RET_STATE;
78 		req_state->pwr_domain_state[MPIDR_AFFLVL1] = PSCI_LOCAL_STATE_RUN;
79 		break;
80 
81 	case PSTATE_ID_CORE_POWERDN:
82 
83 		/* Core powerdown request */
84 		req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id;
85 		req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id;
86 
87 		break;
88 
89 	default:
90 		ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
91 		ret = PSCI_E_INVALID_PARAMS;
92 		break;
93 	}
94 
95 	return ret;
96 }
97 
98 int32_t tegra_soc_cpu_standby(plat_local_state_t cpu_state)
99 {
100 	uint32_t cpu = plat_my_core_pos();
101 	mce_cstate_info_t cstate_info = { 0 };
102 
103 	/* Program default wake mask */
104 	cstate_info.wake_mask = TEGRA194_CORE_WAKE_MASK;
105 	cstate_info.update_wake_mask = 1;
106 	mce_update_cstate_info(&cstate_info);
107 
108 	/* Enter CPU idle */
109 	(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
110 				  (uint64_t)TEGRA_NVG_CORE_C6,
111 				  t19x_percpu_data[cpu].wake_time,
112 				  0U);
113 
114 	return PSCI_E_SUCCESS;
115 }
116 
117 int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
118 {
119 	const plat_local_state_t *pwr_domain_state;
120 	uint8_t stateid_afflvl0, stateid_afflvl2;
121 	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
122 	uint64_t mc_ctx_base;
123 	uint32_t val;
124 	mce_cstate_info_t sc7_cstate_info = {
125 		.cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6,
126 		.ccplex = (uint32_t)TEGRA_NVG_CG_CG7,
127 		.system = (uint32_t)TEGRA_NVG_SYSTEM_SC7,
128 		.system_state_force = 1U,
129 		.update_wake_mask = 1U,
130 	};
131 	uint32_t cpu = plat_my_core_pos();
132 	int32_t ret = 0;
133 
134 	/* get the state ID */
135 	pwr_domain_state = target_state->pwr_domain_state;
136 	stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] &
137 		TEGRA194_STATE_ID_MASK;
138 	stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
139 		TEGRA194_STATE_ID_MASK;
140 
141 	if (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN) {
142 
143 		/* Enter CPU powerdown */
144 		(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
145 					  (uint64_t)TEGRA_NVG_CORE_C7,
146 					  t19x_percpu_data[cpu].wake_time,
147 					  0U);
148 
149 	} else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
150 
151 		/* save 'Secure Boot' Processor Feature Config Register */
152 		val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG);
153 		mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val);
154 
155 		/* save MC context */
156 		mc_ctx_base = params_from_bl2->tzdram_base +
157 				tegra194_get_mc_ctx_offset();
158 		tegra_mc_save_context((uintptr_t)mc_ctx_base);
159 
160 		/*
161 		 * Suspend SE, RNG1 and PKA1 only on silcon and fpga,
162 		 * since VDK does not support atomic se ctx save
163 		 */
164 		if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) {
165 			ret = tegra_se_suspend();
166 			assert(ret == 0);
167 		}
168 
169 		/* Prepare for system suspend */
170 		mce_update_cstate_info(&sc7_cstate_info);
171 
172 		do {
173 			val = (uint32_t)mce_command_handler(
174 					(uint32_t)MCE_CMD_IS_SC7_ALLOWED,
175 					(uint32_t)TEGRA_NVG_CORE_C7,
176 					MCE_CORE_SLEEP_TIME_INFINITE,
177 					0U);
178 		} while (val == 0U);
179 
180 		/* Instruct the MCE to enter system suspend state */
181 		ret = mce_command_handler(
182 				(uint64_t)MCE_CMD_ENTER_CSTATE,
183 				(uint64_t)TEGRA_NVG_CORE_C7,
184 				MCE_CORE_SLEEP_TIME_INFINITE,
185 				0U);
186 		assert(ret == 0);
187 
188 		/* set system suspend state for house-keeping */
189 		tegra194_set_system_suspend_entry();
190 	} else {
191 		; /* do nothing */
192 	}
193 
194 	return PSCI_E_SUCCESS;
195 }
196 
197 /*******************************************************************************
198  * Helper function to check if this is the last ON CPU in the cluster
199  ******************************************************************************/
200 static bool tegra_last_on_cpu_in_cluster(const plat_local_state_t *states,
201 			uint32_t ncpu)
202 {
203 	plat_local_state_t target;
204 	bool last_on_cpu = true;
205 	uint32_t num_cpus = ncpu, pos = 0;
206 
207 	do {
208 		target = states[pos];
209 		if (target != PLAT_MAX_OFF_STATE) {
210 			last_on_cpu = false;
211 		}
212 		--num_cpus;
213 		pos++;
214 	} while (num_cpus != 0U);
215 
216 	return last_on_cpu;
217 }
218 
219 /*******************************************************************************
220  * Helper function to get target power state for the cluster
221  ******************************************************************************/
222 static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states,
223 			uint32_t ncpu)
224 {
225 	uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK;
226 	plat_local_state_t target = states[core_pos];
227 	mce_cstate_info_t cstate_info = { 0 };
228 
229 	/* CPU suspend */
230 	if (target == PSTATE_ID_CORE_POWERDN) {
231 
232 		/* Program default wake mask */
233 		cstate_info.wake_mask = TEGRA194_CORE_WAKE_MASK;
234 		cstate_info.update_wake_mask = 1;
235 		mce_update_cstate_info(&cstate_info);
236 	}
237 
238 	/* CPU off */
239 	if (target == PLAT_MAX_OFF_STATE) {
240 
241 		/* Enable cluster powerdn from last CPU in the cluster */
242 		if (tegra_last_on_cpu_in_cluster(states, ncpu)) {
243 
244 			/* Enable CC6 state and turn off wake mask */
245 			cstate_info.cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6;
246 			cstate_info.ccplex = (uint32_t)TEGRA_NVG_CG_CG7;
247 			cstate_info.system_state_force = 1;
248 			cstate_info.update_wake_mask = 1U;
249 			mce_update_cstate_info(&cstate_info);
250 
251 		} else {
252 
253 			/* Turn off wake_mask */
254 			cstate_info.update_wake_mask = 1U;
255 			mce_update_cstate_info(&cstate_info);
256 			target = PSCI_LOCAL_STATE_RUN;
257 		}
258 	}
259 
260 	return target;
261 }
262 
263 /*******************************************************************************
264  * Platform handler to calculate the proper target power level at the
265  * specified affinity level
266  ******************************************************************************/
267 plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl,
268 					     const plat_local_state_t *states,
269 					     uint32_t ncpu)
270 {
271 	plat_local_state_t target = PSCI_LOCAL_STATE_RUN;
272 	uint32_t cpu = plat_my_core_pos();
273 
274 	/* System Suspend */
275 	if ((lvl == (uint32_t)MPIDR_AFFLVL2) && (states[cpu] == PSTATE_ID_SOC_POWERDN)) {
276 		target = PSTATE_ID_SOC_POWERDN;
277 	}
278 
279 	/* CPU off, CPU suspend */
280 	if (lvl == (uint32_t)MPIDR_AFFLVL1) {
281 		target = tegra_get_afflvl1_pwr_state(states, ncpu);
282 	}
283 
284 	/* target cluster/system state */
285 	return target;
286 }
287 
288 int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state)
289 {
290 	const plat_local_state_t *pwr_domain_state =
291 		target_state->pwr_domain_state;
292 	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
293 	uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
294 		TEGRA194_STATE_ID_MASK;
295 	uint64_t src_len_in_bytes = (uintptr_t)&__BL31_END__ - (uintptr_t)BL31_BASE;
296 	uint64_t val;
297 	int32_t ret = PSCI_E_SUCCESS;
298 
299 	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
300 		val = params_from_bl2->tzdram_base +
301 		      tegra194_get_cpu_reset_handler_size();
302 
303 		/* initialise communication channel with BPMP */
304 		ret = tegra_bpmp_ipc_init();
305 		assert(ret == 0);
306 
307 		/* Enable SE clock before SE context save */
308 		ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE);
309 		assert(ret == 0);
310 
311 		/*
312 		 * It is very unlikely that the BL31 image would be
313 		 * bigger than 2^32 bytes
314 		 */
315 		assert(src_len_in_bytes < UINT32_MAX);
316 
317 		if (tegra_se_calculate_save_sha256(BL31_BASE,
318 					(uint32_t)src_len_in_bytes) != 0) {
319 			ERROR("Hash calculation failed. Reboot\n");
320 			(void)tegra_soc_prepare_system_reset();
321 		}
322 
323 		/*
324 		 * The TZRAM loses power when we enter system suspend. To
325 		 * allow graceful exit from system suspend, we need to copy
326 		 * BL3-1 over to TZDRAM.
327 		 */
328 		val = params_from_bl2->tzdram_base +
329 		      tegra194_get_cpu_reset_handler_size();
330 		memcpy((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE,
331 		       src_len_in_bytes);
332 
333 		/* Disable SE clock after SE context save */
334 		ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE);
335 		assert(ret == 0);
336 	}
337 
338 	return ret;
339 }
340 
341 int32_t tegra_soc_pwr_domain_suspend_pwrdown_early(const psci_power_state_t *target_state)
342 {
343 	return PSCI_E_NOT_SUPPORTED;
344 }
345 
346 int32_t tegra_soc_pwr_domain_on(u_register_t mpidr)
347 {
348 	uint64_t target_cpu = mpidr & MPIDR_CPU_MASK;
349 	uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >>
350 			MPIDR_AFFINITY_BITS;
351 	int32_t ret = 0;
352 
353 	if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) {
354 		ERROR("%s: unsupported CPU (0x%lx)\n", __func__ , mpidr);
355 		return PSCI_E_NOT_PRESENT;
356 	}
357 
358 	/* construct the target CPU # */
359 	target_cpu += (target_cluster << 1U);
360 
361 	ret = mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U);
362 	if (ret < 0) {
363 		return PSCI_E_DENIED;
364 	}
365 
366 	return PSCI_E_SUCCESS;
367 }
368 
369 int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
370 {
371 	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
372 	uint8_t enable_ccplex_lock_step = params_from_bl2->enable_ccplex_lock_step;
373 	uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL];
374 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
375 	uint64_t actlr_elx;
376 
377 	/*
378 	 * Reset power state info for CPUs when onlining, we set
379 	 * deepest power when offlining a core but that may not be
380 	 * requested by non-secure sw which controls idle states. It
381 	 * will re-init this info from non-secure software when the
382 	 * core come online.
383 	 */
384 	actlr_elx = read_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1));
385 	actlr_elx &= ~DENVER_CPU_PMSTATE_MASK;
386 	actlr_elx |= DENVER_CPU_PMSTATE_C1;
387 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
388 
389 	/*
390 	 * Check if we are exiting from deep sleep and restore SE
391 	 * context if we are.
392 	 */
393 	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
394 
395 #if ENABLE_STRICT_CHECKING_MODE
396 		/*
397 		 * Enable strict checking after programming the GSC for
398 		 * enabling TZSRAM and TZDRAM
399 		 */
400 		mce_enable_strict_checking();
401 #endif
402 
403 		/* Init SMMU */
404 		tegra_smmu_init();
405 
406 		/* Resume SE, RNG1 and PKA1 */
407 		tegra_se_resume();
408 
409 		/*
410 		 * Program XUSB STREAMIDs
411 		 * ======================
412 		 * T19x XUSB has support for XUSB virtualization. It will
413 		 * have one physical function (PF) and four Virtual functions
414 		 * (VF)
415 		 *
416 		 * There were below two SIDs for XUSB until T186.
417 		 * 1) #define TEGRA_SID_XUSB_HOST    0x1bU
418 		 * 2) #define TEGRA_SID_XUSB_DEV    0x1cU
419 		 *
420 		 * We have below four new SIDs added for VF(s)
421 		 * 3) #define TEGRA_SID_XUSB_VF0    0x5dU
422 		 * 4) #define TEGRA_SID_XUSB_VF1    0x5eU
423 		 * 5) #define TEGRA_SID_XUSB_VF2    0x5fU
424 		 * 6) #define TEGRA_SID_XUSB_VF3    0x60U
425 		 *
426 		 * When virtualization is enabled then we have to disable SID
427 		 * override and program above SIDs in below newly added SID
428 		 * registers in XUSB PADCTL MMIO space. These registers are
429 		 * TZ protected and so need to be done in ATF.
430 		 *
431 		 * a) #define XUSB_PADCTL_HOST_AXI_STREAMID_PF_0 (0x136cU)
432 		 * b) #define XUSB_PADCTL_DEV_AXI_STREAMID_PF_0  (0x139cU)
433 		 * c) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_0 (0x1370U)
434 		 * d) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_1 (0x1374U)
435 		 * e) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_2 (0x1378U)
436 		 * f) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_3 (0x137cU)
437 		 *
438 		 * This change disables SID override and programs XUSB SIDs
439 		 * in above registers to support both virtualization and
440 		 * non-virtualization platforms
441 		 */
442 		if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) {
443 
444 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
445 				XUSB_PADCTL_HOST_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_HOST);
446 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
447 				XUSB_PADCTL_HOST_AXI_STREAMID_VF_0, TEGRA_SID_XUSB_VF0);
448 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
449 				XUSB_PADCTL_HOST_AXI_STREAMID_VF_1, TEGRA_SID_XUSB_VF1);
450 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
451 				XUSB_PADCTL_HOST_AXI_STREAMID_VF_2, TEGRA_SID_XUSB_VF2);
452 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
453 				XUSB_PADCTL_HOST_AXI_STREAMID_VF_3, TEGRA_SID_XUSB_VF3);
454 			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
455 				XUSB_PADCTL_DEV_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_DEV);
456 		}
457 	}
458 
459 	/*
460 	 * Enable dual execution optimized translations for all ELx.
461 	 */
462 	if (enable_ccplex_lock_step != 0U) {
463 		actlr_elx = read_actlr_el3();
464 		actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL3;
465 		write_actlr_el3(actlr_elx);
466 
467 		actlr_elx = read_actlr_el2();
468 		actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL2;
469 		write_actlr_el2(actlr_elx);
470 
471 		actlr_elx = read_actlr_el1();
472 		actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL1;
473 		write_actlr_el1(actlr_elx);
474 	}
475 
476 	return PSCI_E_SUCCESS;
477 }
478 
479 int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
480 {
481 	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
482 	int32_t ret = 0;
483 
484 	(void)target_state;
485 
486 	/* Disable Denver's DCO operations */
487 	if (impl == DENVER_IMPL) {
488 		denver_disable_dco();
489 	}
490 
491 	/* Turn off CPU */
492 	ret = mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
493 			(uint64_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
494 	assert(ret == 0);
495 
496 	return PSCI_E_SUCCESS;
497 }
498 
499 __dead2 void tegra_soc_prepare_system_off(void)
500 {
501 	/* System power off */
502 	mce_system_shutdown();
503 
504 	wfi();
505 
506 	/* wait for the system to power down */
507 	for (;;) {
508 		;
509 	}
510 }
511 
512 int32_t tegra_soc_prepare_system_reset(void)
513 {
514 	/* System reboot */
515 	mce_system_reboot();
516 
517 	return PSCI_E_SUCCESS;
518 }
519