xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t194/drivers/se/se.c (revision f6c4b19ac84054f191d69662404f4af321f08b2e)
1 /*
2  * Copyright (c) 2020, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <errno.h>
10 #include <stdbool.h>
11 
12 #include <arch_helpers.h>
13 #include <common/debug.h>
14 #include <drivers/delay_timer.h>
15 #include <lib/mmio.h>
16 #include <lib/psci/psci.h>
17 #include <tegra_platform.h>
18 
19 #include "se_private.h"
20 
21 /*******************************************************************************
22  * Constants and Macros
23  ******************************************************************************/
24 #define ERR_STATUS_SW_CLEAR	U(0xFFFFFFFF)
25 #define INT_STATUS_SW_CLEAR	U(0xFFFFFFFF)
26 #define MAX_TIMEOUT_MS		U(100)	/* Timeout in 100ms */
27 #define NUM_SE_REGS_TO_SAVE	U(4)
28 
29 /*******************************************************************************
30  * Data structure and global variables
31  ******************************************************************************/
32 static uint32_t se_regs[NUM_SE_REGS_TO_SAVE];
33 
34 /*
35  * Check that SE operation has completed after kickoff.
36  *
37  * This function is invoked after an SE operation has been started,
38  * and it checks the following conditions:
39  *
40  * 1. SE_STATUS = IDLE
41  * 2. AHB bus data transfer is complete.
42  * 3. SE_ERR_STATUS is clean.
43  */
44 static bool tegra_se_is_operation_complete(void)
45 {
46 	uint32_t val = 0, timeout = 0, sha_status, aes_status;
47 	int32_t ret = 0;
48 	bool se_is_busy, txn_has_errors, txn_successful;
49 
50 	/*
51 	 * Poll the status register to check if the operation
52 	 * completed.
53 	 */
54 	do {
55 		val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
56 		se_is_busy = !!(val & CTX_SAVE_AUTO_SE_BUSY);
57 
58 		/* sleep until SE finishes */
59 		if (se_is_busy) {
60 			mdelay(1);
61 			timeout++;
62 		}
63 
64 	} while (se_is_busy && (timeout < MAX_TIMEOUT_MS));
65 
66 	/* any transaction errors? */
67 	txn_has_errors = (tegra_se_read_32(SHA_ERR_STATUS) != 0U) ||
68 			 (tegra_se_read_32(AES0_ERR_STATUS) != 0U);
69 
70 	/* transaction successful? */
71 	sha_status = tegra_se_read_32(SHA_INT_STATUS) & SHA_SE_OP_DONE;
72 	aes_status = tegra_se_read_32(AES0_INT_STATUS) & AES0_SE_OP_DONE;
73 	txn_successful = (sha_status == SHA_SE_OP_DONE) &&
74 			 (aes_status == AES0_SE_OP_DONE);
75 
76 	if ((timeout == MAX_TIMEOUT_MS) || txn_has_errors || !txn_successful) {
77 		ERROR("%s: Atomic context save operation failed!\n",
78 				__func__);
79 		ret = -ECANCELED;
80 	}
81 
82 	return (ret == 0);
83 }
84 
85 /*
86  * Wait for SE engine to be idle and clear any pending interrupts, before
87  * starting the next SE operation.
88  */
89 static bool tegra_se_is_ready(void)
90 {
91 	int32_t ret = 0;
92 	uint32_t val = 0, timeout = 0;
93 	bool se_is_ready;
94 
95 	/* Wait for previous operation to finish */
96 	do {
97 		val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
98 		se_is_ready = (val == CTX_SAVE_AUTO_SE_READY);
99 
100 		/* sleep until SE is ready */
101 		if (!se_is_ready) {
102 			mdelay(1);
103 			timeout++;
104 		}
105 
106 	} while (!se_is_ready && (timeout < MAX_TIMEOUT_MS));
107 
108 	if (timeout == MAX_TIMEOUT_MS) {
109 		ERROR("%s: SE is not ready!\n", __func__);
110 		ret = -ETIMEDOUT;
111 	}
112 
113 	/* Clear any pending interrupts from previous operation */
114 	tegra_se_write_32(AES0_INT_STATUS, INT_STATUS_SW_CLEAR);
115 	tegra_se_write_32(AES1_INT_STATUS, INT_STATUS_SW_CLEAR);
116 	tegra_se_write_32(RSA_INT_STATUS, INT_STATUS_SW_CLEAR);
117 	tegra_se_write_32(SHA_INT_STATUS, INT_STATUS_SW_CLEAR);
118 
119 	/* Clear error status for each engine seen from current port */
120 	tegra_se_write_32(AES0_ERR_STATUS, ERR_STATUS_SW_CLEAR);
121 	tegra_se_write_32(AES1_ERR_STATUS, ERR_STATUS_SW_CLEAR);
122 	tegra_se_write_32(RSA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
123 	tegra_se_write_32(SHA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
124 
125 	return (ret == 0);
126 }
127 
128 /*
129  * During System Suspend, this handler triggers the hardware context
130  * save operation.
131  */
132 static int32_t tegra_se_save_context(void)
133 {
134 	int32_t ret = -ECANCELED;
135 
136 	/*
137 	 * 1. Ensure all SE Driver including RNG1/PKA1 are shut down.
138 	 *    TSEC/R5s are powergated/idle. All tasks on SE1~SE4, RNG1,
139 	 *    PKA1 are wrapped up. SE0 is ready for use.
140 	 * 2. Clear interrupt/error in SE0 status register.
141 	 * 3. Scrub SE0 register to avoid false failure for illegal
142 	 *    configuration. Probably not needed, dependent on HW
143 	 *    implementation.
144 	 * 4. Check SE is ready for HW CTX_SAVE by polling
145 	 *    SE_CTX_SAVE_AUTO_STATUS.SE_READY.
146 	 *
147 	 *    Steps 1-4 are executed by tegra_se_is_ready().
148 	 *
149 	 * 5. Issue context save command.
150 	 * 6. Check SE is busy with CTX_SAVE, the command in step5 was not
151 	 *    dropped for ongoing traffic in any of SE port/engine.
152 	 * 7. Poll SE register or wait for SE APB interrupt for task completion
153 	 *    a. Polling: Read SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE
154 	 *    b. Interrupt: After receiving interrupt from SE APB, read
155 	 *       SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE.
156 	 * 8. Check AES0 and SHA ERR_STATUS to ensure no error case.
157 	 * 9. Check AES0 and SHA INT_STATUS to ensure operation has successfully
158 	 *    completed.
159 	 *
160 	 *    Steps 6-9 are executed by tegra_se_is_operation_complete().
161 	 */
162 	if (tegra_se_is_ready()) {
163 
164 		/* Issue context save command */
165 		tegra_se_write_32(AES0_OPERATION, SE_OP_CTX_SAVE);
166 
167 		/* Wait for operation to finish */
168 		if (tegra_se_is_operation_complete()) {
169 			ret = 0;
170 		}
171 	}
172 
173 	return ret;
174 }
175 
176 /*
177  * Handler to power down the SE hardware blocks - SE, RNG1 and PKA1. This
178  * needs to be called only during System Suspend.
179  */
180 int32_t tegra_se_suspend(void)
181 {
182 	int32_t ret = 0;
183 
184 	/* save SE registers */
185 	se_regs[0] = mmio_read_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT);
186 	se_regs[1] = mmio_read_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL);
187 	se_regs[2] = mmio_read_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT);
188 	se_regs[3] = mmio_read_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT);
189 
190 	/* Save SE context. The BootROM restores it during System Resume */
191 	ret = tegra_se_save_context();
192 	if (ret != 0) {
193 		ERROR("%s: context save failed (%d)\n", __func__, ret);
194 	}
195 
196 	return ret;
197 }
198 
199 /*
200  * Handler to power up the SE hardware block(s) during System Resume.
201  */
202 void tegra_se_resume(void)
203 {
204 	/*
205 	 * When TZ takes over after System Resume, TZ should first reconfigure
206 	 * SE_MUTEX_WATCHDOG_NS_LIMIT, PKA1_MUTEX_WATCHDOG_NS_LIMIT,
207 	 * RNG1_MUTEX_WATCHDOG_NS_LIMIT and SE_ENTROPY_SRC_AGE_CTRL before
208 	 * other operations.
209 	 */
210 	mmio_write_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT, se_regs[0]);
211 	mmio_write_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL, se_regs[1]);
212 	mmio_write_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[2]);
213 	mmio_write_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[3]);
214 }
215