xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t194/drivers/se/se.c (revision ebd6efae67c6a086bc97d807a638bde324d936dc)
1 /*
2  * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdbool.h>
10 
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <drivers/delay_timer.h>
14 #include <lib/mmio.h>
15 #include <lib/psci/psci.h>
16 #include <tegra_platform.h>
17 
18 #include "se_private.h"
19 
20 /*******************************************************************************
21  * Constants and Macros
22  ******************************************************************************/
23 #define ERR_STATUS_SW_CLEAR	U(0xFFFFFFFF)
24 #define INT_STATUS_SW_CLEAR	U(0xFFFFFFFF)
25 #define MAX_TIMEOUT_MS		U(100)	/* Timeout in 100ms */
26 #define NUM_SE_REGS_TO_SAVE	U(4)
27 
28 /*******************************************************************************
29  * Data structure and global variables
30  ******************************************************************************/
31 static uint32_t se_regs[NUM_SE_REGS_TO_SAVE];
32 
33 /*
34  * Check that SE operation has completed after kickoff.
35  *
36  * This function is invoked after an SE operation has been started,
37  * and it checks the following conditions:
38  *
39  * 1. SE_STATUS = IDLE
40  * 2. AHB bus data transfer is complete.
41  * 3. SE_ERR_STATUS is clean.
42  */
43 static bool tegra_se_is_operation_complete(void)
44 {
45 	uint32_t val = 0, timeout = 0, sha_status, aes_status;
46 	int32_t ret = 0;
47 	bool se_is_busy, txn_has_errors, txn_successful;
48 
49 	/*
50 	 * Poll the status register to check if the operation
51 	 * completed.
52 	 */
53 	do {
54 		val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
55 		se_is_busy = !!(val & CTX_SAVE_AUTO_SE_BUSY);
56 
57 		/* sleep until SE finishes */
58 		if (se_is_busy) {
59 			mdelay(1);
60 			timeout++;
61 		}
62 
63 	} while (se_is_busy && (timeout < MAX_TIMEOUT_MS));
64 
65 	/* any transaction errors? */
66 	txn_has_errors = (tegra_se_read_32(SHA_ERR_STATUS) != 0U) ||
67 			 (tegra_se_read_32(AES0_ERR_STATUS) != 0U);
68 
69 	/* transaction successful? */
70 	sha_status = tegra_se_read_32(SHA_INT_STATUS) & SHA_SE_OP_DONE;
71 	aes_status = tegra_se_read_32(AES0_INT_STATUS) & AES0_SE_OP_DONE;
72 	txn_successful = (sha_status == SHA_SE_OP_DONE) &&
73 			 (aes_status == AES0_SE_OP_DONE);
74 
75 	if ((timeout == MAX_TIMEOUT_MS) || txn_has_errors || !txn_successful) {
76 		ERROR("%s: Atomic context save operation failed!\n",
77 				__func__);
78 		ret = -ECANCELED;
79 	}
80 
81 	return (ret == 0);
82 }
83 
84 /*
85  * Wait for SE engine to be idle and clear any pending interrupts, before
86  * starting the next SE operation.
87  */
88 static bool tegra_se_is_ready(void)
89 {
90 	int32_t ret = 0;
91 	uint32_t val = 0, timeout = 0;
92 	bool se_is_ready;
93 
94 	/* Wait for previous operation to finish */
95 	do {
96 		val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
97 		se_is_ready = (val == CTX_SAVE_AUTO_SE_READY);
98 
99 		/* sleep until SE is ready */
100 		if (!se_is_ready) {
101 			mdelay(1);
102 			timeout++;
103 		}
104 
105 	} while (!se_is_ready && (timeout < MAX_TIMEOUT_MS));
106 
107 	if (timeout == MAX_TIMEOUT_MS) {
108 		ERROR("%s: SE is not ready!\n", __func__);
109 		ret = -ETIMEDOUT;
110 	}
111 
112 	/* Clear any pending interrupts from previous operation */
113 	tegra_se_write_32(AES0_INT_STATUS, INT_STATUS_SW_CLEAR);
114 	tegra_se_write_32(AES1_INT_STATUS, INT_STATUS_SW_CLEAR);
115 	tegra_se_write_32(RSA_INT_STATUS, INT_STATUS_SW_CLEAR);
116 	tegra_se_write_32(SHA_INT_STATUS, INT_STATUS_SW_CLEAR);
117 
118 	/* Clear error status for each engine seen from current port */
119 	tegra_se_write_32(AES0_ERR_STATUS, ERR_STATUS_SW_CLEAR);
120 	tegra_se_write_32(AES1_ERR_STATUS, ERR_STATUS_SW_CLEAR);
121 	tegra_se_write_32(RSA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
122 	tegra_se_write_32(SHA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
123 
124 	return (ret == 0);
125 }
126 
127 /*
128  * During System Suspend, this handler triggers the hardware context
129  * save operation.
130  */
131 static int32_t tegra_se_save_context(void)
132 {
133 	int32_t ret = -ECANCELED;
134 
135 	/*
136 	 * 1. Ensure all SE Driver including RNG1/PKA1 are shut down.
137 	 *    TSEC/R5s are powergated/idle. All tasks on SE1~SE4, RNG1,
138 	 *    PKA1 are wrapped up. SE0 is ready for use.
139 	 * 2. Clear interrupt/error in SE0 status register.
140 	 * 3. Scrub SE0 register to avoid false failure for illegal
141 	 *    configuration. Probably not needed, dependent on HW
142 	 *    implementation.
143 	 * 4. Check SE is ready for HW CTX_SAVE by polling
144 	 *    SE_CTX_SAVE_AUTO_STATUS.SE_READY.
145 	 *
146 	 *    Steps 1-4 are executed by tegra_se_is_ready().
147 	 *
148 	 * 5. Issue context save command.
149 	 * 6. Check SE is busy with CTX_SAVE, the command in step5 was not
150 	 *    dropped for ongoing traffic in any of SE port/engine.
151 	 * 7. Poll SE register or wait for SE APB interrupt for task completion
152 	 *    a. Polling: Read SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE
153 	 *    b. Interrupt: After receiving interrupt from SE APB, read
154 	 *       SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE.
155 	 * 8. Check AES0 and SHA ERR_STATUS to ensure no error case.
156 	 * 9. Check AES0 and SHA INT_STATUS to ensure operation has successfully
157 	 *    completed.
158 	 *
159 	 *    Steps 6-9 are executed by tegra_se_is_operation_complete().
160 	 */
161 	if (tegra_se_is_ready()) {
162 
163 		/* Issue context save command */
164 		tegra_se_write_32(AES0_OPERATION, SE_OP_CTX_SAVE);
165 
166 		/* Wait for operation to finish */
167 		if (tegra_se_is_operation_complete()) {
168 			ret = 0;
169 		}
170 	}
171 
172 	return ret;
173 }
174 
175 /*
176  * Handler to power down the SE hardware blocks - SE, RNG1 and PKA1. This
177  * needs to be called only during System Suspend.
178  */
179 int32_t tegra_se_suspend(void)
180 {
181 	int32_t ret = 0;
182 
183 	/* save SE registers */
184 	se_regs[0] = mmio_read_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT);
185 	se_regs[1] = mmio_read_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL);
186 	se_regs[2] = mmio_read_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT);
187 	se_regs[3] = mmio_read_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT);
188 
189 	/* Save SE context. The BootROM restores it during System Resume */
190 	ret = tegra_se_save_context();
191 	if (ret != 0) {
192 		ERROR("%s: context save failed (%d)\n", __func__, ret);
193 	}
194 
195 	return ret;
196 }
197 
198 /*
199  * Handler to power up the SE hardware block(s) during System Resume.
200  */
201 void tegra_se_resume(void)
202 {
203 	/*
204 	 * When TZ takes over after System Resume, TZ should first reconfigure
205 	 * SE_MUTEX_WATCHDOG_NS_LIMIT, PKA1_MUTEX_WATCHDOG_NS_LIMIT,
206 	 * RNG1_MUTEX_WATCHDOG_NS_LIMIT and SE_ENTROPY_SRC_AGE_CTRL before
207 	 * other operations.
208 	 */
209 	mmio_write_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT, se_regs[0]);
210 	mmio_write_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL, se_regs[1]);
211 	mmio_write_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[2]);
212 	mmio_write_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[3]);
213 }
214