xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t194/drivers/se/se.c (revision 645ac02dd6f17fe7e59d5d858529e13be2c97df5)
1 /*
2  * Copyright (c) 2020, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <errno.h>
10 #include <stdbool.h>
11 
12 #include <arch_helpers.h>
13 #include <bpmp_ipc.h>
14 #include <common/debug.h>
15 #include <drivers/delay_timer.h>
16 #include <lib/mmio.h>
17 #include <lib/psci/psci.h>
18 #include <tegra_platform.h>
19 
20 #include "se_private.h"
21 
22 /*******************************************************************************
23  * Constants and Macros
24  ******************************************************************************/
25 #define ERR_STATUS_SW_CLEAR	U(0xFFFFFFFF)
26 #define INT_STATUS_SW_CLEAR	U(0xFFFFFFFF)
27 #define MAX_TIMEOUT_MS		U(100)	/* Timeout in 100ms */
28 #define NUM_SE_REGS_TO_SAVE	U(4)
29 
30 /*******************************************************************************
31  * Data structure and global variables
32  ******************************************************************************/
33 static uint32_t se_regs[NUM_SE_REGS_TO_SAVE];
34 
35 /*
36  * Check that SE operation has completed after kickoff.
37  *
38  * This function is invoked after an SE operation has been started,
39  * and it checks the following conditions:
40  *
41  * 1. SE_STATUS = IDLE
42  * 2. AHB bus data transfer is complete.
43  * 3. SE_ERR_STATUS is clean.
44  */
45 static bool tegra_se_is_operation_complete(void)
46 {
47 	uint32_t val = 0, timeout = 0, sha_status, aes_status;
48 	int32_t ret = 0;
49 	bool se_is_busy, txn_has_errors, txn_successful;
50 
51 	/*
52 	 * Poll the status register to check if the operation
53 	 * completed.
54 	 */
55 	do {
56 		val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
57 		se_is_busy = !!(val & CTX_SAVE_AUTO_SE_BUSY);
58 
59 		/* sleep until SE finishes */
60 		if (se_is_busy) {
61 			mdelay(1);
62 			timeout++;
63 		}
64 
65 	} while (se_is_busy && (timeout < MAX_TIMEOUT_MS));
66 
67 	/* any transaction errors? */
68 	txn_has_errors = (tegra_se_read_32(SHA_ERR_STATUS) != 0U) ||
69 			 (tegra_se_read_32(AES0_ERR_STATUS) != 0U);
70 
71 	/* transaction successful? */
72 	sha_status = tegra_se_read_32(SHA_INT_STATUS) & SHA_SE_OP_DONE;
73 	aes_status = tegra_se_read_32(AES0_INT_STATUS) & AES0_SE_OP_DONE;
74 	txn_successful = (sha_status == SHA_SE_OP_DONE) &&
75 			 (aes_status == AES0_SE_OP_DONE);
76 
77 	if ((timeout == MAX_TIMEOUT_MS) || txn_has_errors || !txn_successful) {
78 		ERROR("%s: Atomic context save operation failed!\n",
79 				__func__);
80 		ret = -ECANCELED;
81 	}
82 
83 	return (ret == 0);
84 }
85 
86 /*
87  * Wait for SE engine to be idle and clear any pending interrupts, before
88  * starting the next SE operation.
89  */
90 static bool tegra_se_is_ready(void)
91 {
92 	int32_t ret = 0;
93 	uint32_t val = 0, timeout = 0;
94 	bool se_is_ready;
95 
96 	/* Wait for previous operation to finish */
97 	do {
98 		val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
99 		se_is_ready = (val == CTX_SAVE_AUTO_SE_READY);
100 
101 		/* sleep until SE is ready */
102 		if (!se_is_ready) {
103 			mdelay(1);
104 			timeout++;
105 		}
106 
107 	} while (!se_is_ready && (timeout < MAX_TIMEOUT_MS));
108 
109 	if (timeout == MAX_TIMEOUT_MS) {
110 		ERROR("%s: SE is not ready!\n", __func__);
111 		ret = -ETIMEDOUT;
112 	}
113 
114 	/* Clear any pending interrupts from previous operation */
115 	tegra_se_write_32(AES0_INT_STATUS, INT_STATUS_SW_CLEAR);
116 	tegra_se_write_32(AES1_INT_STATUS, INT_STATUS_SW_CLEAR);
117 	tegra_se_write_32(RSA_INT_STATUS, INT_STATUS_SW_CLEAR);
118 	tegra_se_write_32(SHA_INT_STATUS, INT_STATUS_SW_CLEAR);
119 
120 	/* Clear error status for each engine seen from current port */
121 	tegra_se_write_32(AES0_ERR_STATUS, ERR_STATUS_SW_CLEAR);
122 	tegra_se_write_32(AES1_ERR_STATUS, ERR_STATUS_SW_CLEAR);
123 	tegra_se_write_32(RSA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
124 	tegra_se_write_32(SHA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
125 
126 	return (ret == 0);
127 }
128 
129 /*
130  * During System Suspend, this handler triggers the hardware context
131  * save operation.
132  */
133 static int32_t tegra_se_save_context(void)
134 {
135 	int32_t ret = -ECANCELED;
136 
137 	/*
138 	 * 1. Ensure all SE Driver including RNG1/PKA1 are shut down.
139 	 *    TSEC/R5s are powergated/idle. All tasks on SE1~SE4, RNG1,
140 	 *    PKA1 are wrapped up. SE0 is ready for use.
141 	 * 2. Clear interrupt/error in SE0 status register.
142 	 * 3. Scrub SE0 register to avoid false failure for illegal
143 	 *    configuration. Probably not needed, dependent on HW
144 	 *    implementation.
145 	 * 4. Check SE is ready for HW CTX_SAVE by polling
146 	 *    SE_CTX_SAVE_AUTO_STATUS.SE_READY.
147 	 *
148 	 *    Steps 1-4 are executed by tegra_se_is_ready().
149 	 *
150 	 * 5. Issue context save command.
151 	 * 6. Check SE is busy with CTX_SAVE, the command in step5 was not
152 	 *    dropped for ongoing traffic in any of SE port/engine.
153 	 * 7. Poll SE register or wait for SE APB interrupt for task completion
154 	 *    a. Polling: Read SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE
155 	 *    b. Interrupt: After receiving interrupt from SE APB, read
156 	 *       SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE.
157 	 * 8. Check AES0 and SHA ERR_STATUS to ensure no error case.
158 	 * 9. Check AES0 and SHA INT_STATUS to ensure operation has successfully
159 	 *    completed.
160 	 *
161 	 *    Steps 6-9 are executed by tegra_se_is_operation_complete().
162 	 */
163 	if (tegra_se_is_ready()) {
164 
165 		/* Issue context save command */
166 		tegra_se_write_32(AES0_OPERATION, SE_OP_CTX_SAVE);
167 
168 		/* Wait for operation to finish */
169 		if (tegra_se_is_operation_complete()) {
170 			ret = 0;
171 		}
172 	}
173 
174 	return ret;
175 }
176 
177 /*
178  * Handler to power down the SE hardware blocks - SE, RNG1 and PKA1. This
179  * needs to be called only during System Suspend.
180  */
181 int32_t tegra_se_suspend(void)
182 {
183 	int32_t ret = 0;
184 
185 	/* initialise communication channel with BPMP */
186 	assert(tegra_bpmp_ipc_init() == 0);
187 
188 	/* Enable SE clock before SE context save */
189 	tegra_bpmp_ipc_enable_clock(TEGRA_CLK_SE);
190 
191 	/* save SE registers */
192 	se_regs[0] = mmio_read_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT);
193 	se_regs[1] = mmio_read_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL);
194 	se_regs[2] = mmio_read_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT);
195 	se_regs[3] = mmio_read_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT);
196 
197 	/* Save SE context. The BootROM restores it during System Resume */
198 	ret = tegra_se_save_context();
199 	if (ret != 0) {
200 		ERROR("%s: context save failed (%d)\n", __func__, ret);
201 	}
202 
203 	/* Disable SE clock after SE context save */
204 	tegra_bpmp_ipc_disable_clock(TEGRA_CLK_SE);
205 
206 	return ret;
207 }
208 
209 /*
210  * Handler to power up the SE hardware block(s) during System Resume.
211  */
212 void tegra_se_resume(void)
213 {
214 	/* initialise communication channel with BPMP */
215 	assert(tegra_bpmp_ipc_init() == 0);
216 
217 	/* Enable SE clock before SE context restore */
218 	tegra_bpmp_ipc_enable_clock(TEGRA_CLK_SE);
219 
220 	/*
221 	 * When TZ takes over after System Resume, TZ should first reconfigure
222 	 * SE_MUTEX_WATCHDOG_NS_LIMIT, PKA1_MUTEX_WATCHDOG_NS_LIMIT,
223 	 * RNG1_MUTEX_WATCHDOG_NS_LIMIT and SE_ENTROPY_SRC_AGE_CTRL before
224 	 * other operations.
225 	 */
226 	mmio_write_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT, se_regs[0]);
227 	mmio_write_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL, se_regs[1]);
228 	mmio_write_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[2]);
229 	mmio_write_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[3]);
230 
231 	/* Disable SE clock after SE context restore */
232 	tegra_bpmp_ipc_disable_clock(TEGRA_CLK_SE);
233 }
234