1 /* 2 * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 9 #include <arch_helpers.h> 10 #include <bl31/bl31.h> 11 #include <bl31/interrupt_mgmt.h> 12 #include <common/bl_common.h> 13 #include <common/debug.h> 14 #include <common/interrupt_props.h> 15 #include <context.h> 16 #include <cortex_a57.h> 17 #include <denver.h> 18 #include <drivers/arm/gic_common.h> 19 #include <drivers/arm/gicv2.h> 20 #include <drivers/console.h> 21 #include <lib/el3_runtime/context_mgmt.h> 22 #include <lib/xlat_tables/xlat_tables_v2.h> 23 #include <plat/common/platform.h> 24 25 #include <mce.h> 26 #include <tegra_def.h> 27 #include <tegra_platform.h> 28 #include <tegra_private.h> 29 30 /******************************************************************************* 31 * Tegra186 CPU numbers in cluster #0 32 ******************************************************************************* 33 */ 34 #define TEGRA186_CLUSTER0_CORE2 2U 35 #define TEGRA186_CLUSTER0_CORE3 3U 36 37 /******************************************************************************* 38 * The Tegra power domain tree has a single system level power domain i.e. a 39 * single root node. The first entry in the power domain descriptor specifies 40 * the number of power domains at the highest power level. 41 ******************************************************************************* 42 */ 43 static const uint8_t tegra_power_domain_tree_desc[] = { 44 /* No of root nodes */ 45 1, 46 /* No of clusters */ 47 PLATFORM_CLUSTER_COUNT, 48 /* No of CPU cores - cluster0 */ 49 PLATFORM_MAX_CPUS_PER_CLUSTER, 50 /* No of CPU cores - cluster1 */ 51 PLATFORM_MAX_CPUS_PER_CLUSTER 52 }; 53 54 /******************************************************************************* 55 * This function returns the Tegra default topology tree information. 56 ******************************************************************************/ 57 const uint8_t *plat_get_power_domain_tree_desc(void) 58 { 59 return tegra_power_domain_tree_desc; 60 } 61 62 /* 63 * Table of regions to map using the MMU. 64 */ 65 static const mmap_region_t tegra_mmap[] = { 66 MAP_REGION_FLAT(TEGRA_MISC_BASE, 0x10000U, /* 64KB */ 67 MT_DEVICE | MT_RW | MT_SECURE), 68 MAP_REGION_FLAT(TEGRA_TSA_BASE, 0x20000U, /* 128KB */ 69 MT_DEVICE | MT_RW | MT_SECURE), 70 MAP_REGION_FLAT(TEGRA_MC_STREAMID_BASE, 0x10000U, /* 64KB */ 71 MT_DEVICE | MT_RW | MT_SECURE), 72 MAP_REGION_FLAT(TEGRA_MC_BASE, 0x10000U, /* 64KB */ 73 MT_DEVICE | MT_RW | MT_SECURE), 74 MAP_REGION_FLAT(TEGRA_UARTA_BASE, 0x20000U, /* 128KB - UART A, B*/ 75 MT_DEVICE | MT_RW | MT_SECURE), 76 MAP_REGION_FLAT(TEGRA_UARTC_BASE, 0x20000U, /* 128KB - UART C, G */ 77 MT_DEVICE | MT_RW | MT_SECURE), 78 MAP_REGION_FLAT(TEGRA_UARTD_BASE, 0x30000U, /* 192KB - UART D, E, F */ 79 MT_DEVICE | MT_RW | MT_SECURE), 80 MAP_REGION_FLAT(TEGRA_FUSE_BASE, 0x10000U, /* 64KB */ 81 MT_DEVICE | MT_RW | MT_SECURE), 82 MAP_REGION_FLAT(TEGRA_GICD_BASE, 0x20000U, /* 128KB */ 83 MT_DEVICE | MT_RW | MT_SECURE), 84 MAP_REGION_FLAT(TEGRA_SE0_BASE, 0x10000U, /* 64KB */ 85 MT_DEVICE | MT_RW | MT_SECURE), 86 MAP_REGION_FLAT(TEGRA_PKA1_BASE, 0x10000U, /* 64KB */ 87 MT_DEVICE | MT_RW | MT_SECURE), 88 MAP_REGION_FLAT(TEGRA_RNG1_BASE, 0x10000U, /* 64KB */ 89 MT_DEVICE | MT_RW | MT_SECURE), 90 MAP_REGION_FLAT(TEGRA_CAR_RESET_BASE, 0x10000U, /* 64KB */ 91 MT_DEVICE | MT_RW | MT_SECURE), 92 MAP_REGION_FLAT(TEGRA_PMC_BASE, 0x40000U, /* 256KB */ 93 MT_DEVICE | MT_RW | MT_SECURE), 94 MAP_REGION_FLAT(TEGRA_TMRUS_BASE, 0x1000U, /* 4KB */ 95 MT_DEVICE | MT_RO | MT_SECURE), 96 MAP_REGION_FLAT(TEGRA_SCRATCH_BASE, 0x10000U, /* 64KB */ 97 MT_DEVICE | MT_RW | MT_SECURE), 98 MAP_REGION_FLAT(TEGRA_MMCRAB_BASE, 0x60000U, /* 384KB */ 99 MT_DEVICE | MT_RW | MT_SECURE), 100 MAP_REGION_FLAT(TEGRA_ARM_ACTMON_CTR_BASE, 0x20000U, /* 128KB - ARM/Denver */ 101 MT_DEVICE | MT_RW | MT_SECURE), 102 MAP_REGION_FLAT(TEGRA_SMMU0_BASE, 0x1000000U, /* 64KB */ 103 MT_DEVICE | MT_RW | MT_SECURE), 104 {0} 105 }; 106 107 /******************************************************************************* 108 * Set up the pagetables as per the platform memory map & initialize the MMU 109 ******************************************************************************/ 110 const mmap_region_t *plat_get_mmio_map(void) 111 { 112 /* MMIO space */ 113 return tegra_mmap; 114 } 115 116 /******************************************************************************* 117 * Handler to get the System Counter Frequency 118 ******************************************************************************/ 119 uint32_t plat_get_syscnt_freq2(void) 120 { 121 return 31250000; 122 } 123 124 /******************************************************************************* 125 * Maximum supported UART controllers 126 ******************************************************************************/ 127 #define TEGRA186_MAX_UART_PORTS 7 128 129 /******************************************************************************* 130 * This variable holds the UART port base addresses 131 ******************************************************************************/ 132 static uint32_t tegra186_uart_addresses[TEGRA186_MAX_UART_PORTS + 1] = { 133 0, /* undefined - treated as an error case */ 134 TEGRA_UARTA_BASE, 135 TEGRA_UARTB_BASE, 136 TEGRA_UARTC_BASE, 137 TEGRA_UARTD_BASE, 138 TEGRA_UARTE_BASE, 139 TEGRA_UARTF_BASE, 140 TEGRA_UARTG_BASE, 141 }; 142 143 /******************************************************************************* 144 * Retrieve the UART controller base to be used as the console 145 ******************************************************************************/ 146 uint32_t plat_get_console_from_id(int32_t id) 147 { 148 uint32_t ret; 149 150 if (id > TEGRA186_MAX_UART_PORTS) { 151 ret = 0; 152 } else { 153 ret = tegra186_uart_addresses[id]; 154 } 155 156 return ret; 157 } 158 159 /******************************************************************************* 160 * Handler for early platform setup 161 ******************************************************************************/ 162 void plat_early_platform_setup(void) 163 { 164 uint64_t impl, val; 165 const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); 166 167 /* sanity check MCE firmware compatibility */ 168 mce_verify_firmware_version(); 169 170 impl = (read_midr() >> MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK; 171 172 /* 173 * Enable ECC and Parity Protection for Cortex-A57 CPUs (Tegra186 174 * A02p and beyond). 175 */ 176 if ((plat_params->l2_ecc_parity_prot_dis != 1) && 177 (impl != (uint64_t)DENVER_IMPL)) { 178 179 val = read_l2ctlr_el1(); 180 val |= CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT; 181 write_l2ctlr_el1(val); 182 } 183 } 184 185 /* Secure IRQs for Tegra186 */ 186 static const interrupt_prop_t tegra186_interrupt_props[] = { 187 INTR_PROP_DESC(TEGRA186_TOP_WDT_IRQ, GIC_HIGHEST_SEC_PRIORITY, 188 GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE), 189 INTR_PROP_DESC(TEGRA186_AON_WDT_IRQ, GIC_HIGHEST_SEC_PRIORITY, 190 GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE) 191 }; 192 193 /******************************************************************************* 194 * Initialize the GIC and SGIs 195 ******************************************************************************/ 196 void plat_gic_setup(void) 197 { 198 tegra_gic_setup(tegra186_interrupt_props, ARRAY_SIZE(tegra186_interrupt_props)); 199 tegra_gic_init(); 200 201 /* 202 * Initialize the FIQ handler only if the platform supports any 203 * FIQ interrupt sources. 204 */ 205 tegra_fiq_handler_setup(); 206 } 207 208 /******************************************************************************* 209 * Return pointer to the BL31 params from previous bootloader 210 ******************************************************************************/ 211 struct tegra_bl31_params *plat_get_bl31_params(void) 212 { 213 uint32_t val; 214 215 val = mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_BL31_PARAMS_ADDR); 216 217 return (struct tegra_bl31_params *)(uintptr_t)val; 218 } 219 220 /******************************************************************************* 221 * Return pointer to the BL31 platform params from previous bootloader 222 ******************************************************************************/ 223 plat_params_from_bl2_t *plat_get_bl31_plat_params(void) 224 { 225 uint32_t val; 226 227 val = mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_BL31_PLAT_PARAMS_ADDR); 228 229 return (plat_params_from_bl2_t *)(uintptr_t)val; 230 } 231 232 /******************************************************************************* 233 * This function implements a part of the critical interface between the psci 234 * generic layer and the platform that allows the former to query the platform 235 * to convert an MPIDR to a unique linear index. An error code (-1) is returned 236 * in case the MPIDR is invalid. 237 ******************************************************************************/ 238 int32_t plat_core_pos_by_mpidr(u_register_t mpidr) 239 { 240 u_register_t cluster_id, cpu_id, pos; 241 int32_t ret; 242 243 cluster_id = (mpidr >> (u_register_t)MPIDR_AFF1_SHIFT) & (u_register_t)MPIDR_AFFLVL_MASK; 244 cpu_id = (mpidr >> (u_register_t)MPIDR_AFF0_SHIFT) & (u_register_t)MPIDR_AFFLVL_MASK; 245 246 /* 247 * Validate cluster_id by checking whether it represents 248 * one of the two clusters present on the platform. 249 * Validate cpu_id by checking whether it represents a CPU in 250 * one of the two clusters present on the platform. 251 */ 252 if ((cluster_id >= (u_register_t)PLATFORM_CLUSTER_COUNT) || 253 (cpu_id >= (u_register_t)PLATFORM_MAX_CPUS_PER_CLUSTER)) { 254 ret = PSCI_E_NOT_PRESENT; 255 } else { 256 /* calculate the core position */ 257 pos = cpu_id + (cluster_id << 2U); 258 259 /* check for non-existent CPUs */ 260 if ((pos == TEGRA186_CLUSTER0_CORE2) || (pos == TEGRA186_CLUSTER0_CORE3)) { 261 ret = PSCI_E_NOT_PRESENT; 262 } else { 263 ret = (int32_t)pos; 264 } 265 } 266 267 return ret; 268 } 269