xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t186/plat_psci_handlers.c (revision 7f164a83a9d9cade9917f448c629d85913ff10c6)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/bl_common.h>
15 #include <common/debug.h>
16 #include <context.h>
17 #include <cortex_a57.h>
18 #include <denver.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/psci/psci.h>
21 #include <plat/common/platform.h>
22 
23 #include <bpmp_ipc.h>
24 #include <mce.h>
25 #include <memctrl_v2.h>
26 #include <security_engine.h>
27 #include <smmu.h>
28 #include <t18x_ari.h>
29 #include <tegra186_private.h>
30 #include <tegra_private.h>
31 
32 extern void memcpy16(void *dest, const void *src, unsigned int length);
33 
34 /* state id mask */
35 #define TEGRA186_STATE_ID_MASK		0xFU
36 /* constants to get power state's wake time */
37 #define TEGRA186_WAKE_TIME_MASK		0x0FFFFFF0U
38 #define TEGRA186_WAKE_TIME_SHIFT	4U
39 /* default core wake mask for CPU_SUSPEND */
40 #define TEGRA186_CORE_WAKE_MASK		0x180cU
41 /* context size to save during system suspend */
42 #define TEGRA186_SE_CONTEXT_SIZE	3U
43 
44 static uint32_t se_regs[TEGRA186_SE_CONTEXT_SIZE];
45 static struct tegra_psci_percpu_data {
46 	uint32_t wake_time;
47 } __aligned(CACHE_WRITEBACK_GRANULE) tegra_percpu_data[PLATFORM_CORE_COUNT];
48 
49 int32_t tegra_soc_validate_power_state(uint32_t power_state,
50 					psci_power_state_t *req_state)
51 {
52 	uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) & TEGRA186_STATE_ID_MASK;
53 	uint32_t cpu = plat_my_core_pos();
54 	int32_t ret = PSCI_E_SUCCESS;
55 
56 	/* save the core wake time (in TSC ticks)*/
57 	tegra_percpu_data[cpu].wake_time = (power_state & TEGRA186_WAKE_TIME_MASK)
58 			<< TEGRA186_WAKE_TIME_SHIFT;
59 
60 	/*
61 	 * Clean percpu_data[cpu] to DRAM. This needs to be done to ensure that
62 	 * the correct value is read in tegra_soc_pwr_domain_suspend(), which
63 	 * is called with caches disabled. It is possible to read a stale value
64 	 * from DRAM in that function, because the L2 cache is not flushed
65 	 * unless the cluster is entering CC6/CC7.
66 	 */
67 	clean_dcache_range((uint64_t)&tegra_percpu_data[cpu],
68 			sizeof(tegra_percpu_data[cpu]));
69 
70 	/* Sanity check the requested state id */
71 	switch (state_id) {
72 	case PSTATE_ID_CORE_IDLE:
73 	case PSTATE_ID_CORE_POWERDN:
74 
75 		/* Core powerdown request */
76 		req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id;
77 		req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id;
78 
79 		break;
80 
81 	default:
82 		ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
83 		ret = PSCI_E_INVALID_PARAMS;
84 		break;
85 	}
86 
87 	return ret;
88 }
89 
90 int32_t tegra_soc_cpu_standby(plat_local_state_t cpu_state)
91 {
92 	(void)cpu_state;
93 	return PSCI_E_SUCCESS;
94 }
95 
96 int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
97 {
98 	const plat_local_state_t *pwr_domain_state;
99 	uint8_t stateid_afflvl0, stateid_afflvl2;
100 	uint32_t cpu = plat_my_core_pos();
101 	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
102 	mce_cstate_info_t cstate_info = { 0 };
103 	uint64_t mc_ctx_base;
104 	uint32_t val;
105 
106 	/* get the state ID */
107 	pwr_domain_state = target_state->pwr_domain_state;
108 	stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] &
109 		TEGRA186_STATE_ID_MASK;
110 	stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
111 		TEGRA186_STATE_ID_MASK;
112 
113 	if ((stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ||
114 	    (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN)) {
115 
116 		/* Enter CPU idle/powerdown */
117 		val = (stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ?
118 			(uint32_t)TEGRA_ARI_CORE_C6 : (uint32_t)TEGRA_ARI_CORE_C7;
119 		(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)val,
120 				tegra_percpu_data[cpu].wake_time, 0U);
121 
122 	} else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
123 
124 		/* save SE registers */
125 		se_regs[0] = mmio_read_32(TEGRA_SE0_BASE +
126 				SE_MUTEX_WATCHDOG_NS_LIMIT);
127 		se_regs[1] = mmio_read_32(TEGRA_RNG1_BASE +
128 				RNG_MUTEX_WATCHDOG_NS_LIMIT);
129 		se_regs[2] = mmio_read_32(TEGRA_PKA1_BASE +
130 				PKA_MUTEX_WATCHDOG_NS_LIMIT);
131 
132 		/* save 'Secure Boot' Processor Feature Config Register */
133 		val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG);
134 		mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val);
135 
136 		/* save MC context to TZDRAM */
137 		mc_ctx_base = params_from_bl2->tzdram_base +
138 				tegra186_get_mc_ctx_offset();
139 		tegra_mc_save_context((uintptr_t)mc_ctx_base);
140 
141 		/* Prepare for system suspend */
142 		cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
143 		cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC7;
144 		cstate_info.system_state_force = 1;
145 		cstate_info.update_wake_mask = 1;
146 		mce_update_cstate_info(&cstate_info);
147 
148 		/* Loop until system suspend is allowed */
149 		do {
150 			val = (uint32_t)mce_command_handler(
151 					(uint64_t)MCE_CMD_IS_SC7_ALLOWED,
152 					(uint64_t)TEGRA_ARI_CORE_C7,
153 					MCE_CORE_SLEEP_TIME_INFINITE,
154 					0U);
155 		} while (val == 0U);
156 
157 		/* Instruct the MCE to enter system suspend state */
158 		(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
159 			(uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
160 
161 		/* set system suspend state for house-keeping */
162 		tegra186_set_system_suspend_entry();
163 
164 	} else {
165 		; /* do nothing */
166 	}
167 
168 	return PSCI_E_SUCCESS;
169 }
170 
171 /*******************************************************************************
172  * Helper function to check if this is the last ON CPU in the cluster
173  ******************************************************************************/
174 static bool tegra_last_cpu_in_cluster(const plat_local_state_t *states,
175 			uint32_t ncpu)
176 {
177 	plat_local_state_t target;
178 	bool last_on_cpu = true;
179 	uint32_t num_cpus = ncpu, pos = 0;
180 
181 	do {
182 		target = states[pos];
183 		if (target != PLAT_MAX_OFF_STATE) {
184 			last_on_cpu = false;
185 		}
186 		--num_cpus;
187 		pos++;
188 	} while (num_cpus != 0U);
189 
190 	return last_on_cpu;
191 }
192 
193 /*******************************************************************************
194  * Helper function to get target power state for the cluster
195  ******************************************************************************/
196 static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states,
197 			uint32_t ncpu)
198 {
199 	uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK;
200 	uint32_t cpu = plat_my_core_pos();
201 	int32_t ret;
202 	plat_local_state_t target = states[core_pos];
203 	mce_cstate_info_t cstate_info = { 0 };
204 
205 	/* CPU suspend */
206 	if (target == PSTATE_ID_CORE_POWERDN) {
207 		/* Program default wake mask */
208 		cstate_info.wake_mask = TEGRA186_CORE_WAKE_MASK;
209 		cstate_info.update_wake_mask = 1;
210 		mce_update_cstate_info(&cstate_info);
211 
212 		/* Check if CCx state is allowed. */
213 		ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED,
214 				(uint64_t)TEGRA_ARI_CORE_C7,
215 				tegra_percpu_data[cpu].wake_time,
216 				0U);
217 		if (ret == 0) {
218 			target = PSCI_LOCAL_STATE_RUN;
219 		}
220 	}
221 
222 	/* CPU off */
223 	if (target == PLAT_MAX_OFF_STATE) {
224 		/* Enable cluster powerdn from last CPU in the cluster */
225 		if (tegra_last_cpu_in_cluster(states, ncpu)) {
226 			/* Enable CC7 state and turn off wake mask */
227 			cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
228 			cstate_info.update_wake_mask = 1;
229 			mce_update_cstate_info(&cstate_info);
230 
231 			/* Check if CCx state is allowed. */
232 			ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED,
233 						  (uint64_t)TEGRA_ARI_CORE_C7,
234 						  MCE_CORE_SLEEP_TIME_INFINITE,
235 						  0U);
236 			if (ret == 0) {
237 				target = PSCI_LOCAL_STATE_RUN;
238 			}
239 
240 		} else {
241 
242 			/* Turn off wake_mask */
243 			cstate_info.update_wake_mask = 1;
244 			mce_update_cstate_info(&cstate_info);
245 			target = PSCI_LOCAL_STATE_RUN;
246 		}
247 	}
248 
249 	return target;
250 }
251 
252 /*******************************************************************************
253  * Platform handler to calculate the proper target power level at the
254  * specified affinity level
255  ******************************************************************************/
256 plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl,
257 					     const plat_local_state_t *states,
258 					     uint32_t ncpu)
259 {
260 	plat_local_state_t target = PSCI_LOCAL_STATE_RUN;
261 	uint32_t cpu = plat_my_core_pos();
262 
263 	/* System Suspend */
264 	if ((lvl == (uint32_t)MPIDR_AFFLVL2) &&
265 	    (states[cpu] == PSTATE_ID_SOC_POWERDN)) {
266 		target = PSTATE_ID_SOC_POWERDN;
267 	}
268 
269 	/* CPU off, CPU suspend */
270 	if (lvl == (uint32_t)MPIDR_AFFLVL1) {
271 		target = tegra_get_afflvl1_pwr_state(states, ncpu);
272 	}
273 
274 	/* target cluster/system state */
275 	return target;
276 }
277 
278 int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state)
279 {
280 	const plat_local_state_t *pwr_domain_state =
281 		target_state->pwr_domain_state;
282 	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
283 	uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
284 		TEGRA186_STATE_ID_MASK;
285 	uint64_t val;
286 	uint64_t src_len_in_bytes = (uint64_t)(((uintptr_t)(&__BL31_END__) -
287 					(uintptr_t)BL31_BASE));
288 	int32_t ret;
289 
290 	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
291 		val = params_from_bl2->tzdram_base +
292 		      tegra186_get_cpu_reset_handler_size();
293 
294 		/* Initialise communication channel with BPMP */
295 		assert(tegra_bpmp_ipc_init() == 0);
296 
297 		/* Enable SE clock */
298 		ret = tegra_bpmp_ipc_enable_clock(TEGRA186_CLK_SE);
299 		if (ret != 0) {
300 			ERROR("Failed to enable clock\n");
301 			return ret;
302 		}
303 
304 		/*
305 		 * Generate/save SHA256 of ATF during SC7 entry
306 		 */
307 		if (tegra_se_save_sha256_hash(BL31_BASE,
308 					(uint32_t)src_len_in_bytes) != 0) {
309 			ERROR("Hash calculation failed. Reboot\n");
310 			(void)tegra_soc_prepare_system_reset();
311 		}
312 
313 		/*
314 		 * The TZRAM loses power when we enter system suspend. To
315 		 * allow graceful exit from system suspend, we need to copy
316 		 * BL3-1 over to TZDRAM.
317 		 */
318 		val = params_from_bl2->tzdram_base +
319 			tegra186_get_cpu_reset_handler_size();
320 		memcpy16((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE,
321 			 (uintptr_t)BL31_END - (uintptr_t)BL31_BASE);
322 
323 		ret = tegra_bpmp_ipc_disable_clock(TEGRA186_CLK_SE);
324 		if (ret != 0) {
325 			ERROR("Failed to disable clock\n");
326 			return ret;
327 		}
328 	}
329 
330 	return PSCI_E_SUCCESS;
331 }
332 
333 int32_t tegra_soc_pwr_domain_suspend_pwrdown_early(const psci_power_state_t *target_state)
334 {
335 	return PSCI_E_NOT_SUPPORTED;
336 }
337 
338 int32_t tegra_soc_pwr_domain_on(u_register_t mpidr)
339 {
340 	int32_t ret = PSCI_E_SUCCESS;
341 	uint64_t target_cpu = mpidr & MPIDR_CPU_MASK;
342 	uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >>
343 			MPIDR_AFFINITY_BITS;
344 
345 	if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) {
346 
347 		ERROR("%s: unsupported CPU (0x%lx)\n", __func__, mpidr);
348 		ret = PSCI_E_NOT_PRESENT;
349 
350 	} else {
351 		/* construct the target CPU # */
352 		target_cpu |= (target_cluster << 2);
353 
354 		(void)mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U);
355 	}
356 
357 	return ret;
358 }
359 
360 int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
361 {
362 	uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL];
363 	uint8_t stateid_afflvl0 = target_state->pwr_domain_state[MPIDR_AFFLVL0];
364 	mce_cstate_info_t cstate_info = { 0 };
365 	uint64_t impl, val;
366 	const plat_params_from_bl2_t *plat_params = bl31_get_plat_params();
367 
368 	impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
369 
370 	/*
371 	 * Enable ECC and Parity Protection for Cortex-A57 CPUs (Tegra186
372 	 * A02p and beyond).
373 	 */
374 	if ((plat_params->l2_ecc_parity_prot_dis != 1) && (impl != DENVER_IMPL)) {
375 
376 		val = read_l2ctlr_el1();
377 		val |= CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT;
378 		write_l2ctlr_el1(val);
379 	}
380 
381 	/*
382 	 * Reset power state info for CPUs when onlining, we set
383 	 * deepest power when offlining a core but that may not be
384 	 * requested by non-secure sw which controls idle states. It
385 	 * will re-init this info from non-secure software when the
386 	 * core come online.
387 	 */
388 	if (stateid_afflvl0 == PLAT_MAX_OFF_STATE) {
389 
390 		cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC1;
391 		cstate_info.update_wake_mask = 1;
392 		mce_update_cstate_info(&cstate_info);
393 	}
394 
395 	/*
396 	 * Check if we are exiting from deep sleep and restore SE
397 	 * context if we are.
398 	 */
399 	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
400 
401 		mmio_write_32(TEGRA_SE0_BASE + SE_MUTEX_WATCHDOG_NS_LIMIT,
402 			se_regs[0]);
403 		mmio_write_32(TEGRA_RNG1_BASE + RNG_MUTEX_WATCHDOG_NS_LIMIT,
404 			se_regs[1]);
405 		mmio_write_32(TEGRA_PKA1_BASE + PKA_MUTEX_WATCHDOG_NS_LIMIT,
406 			se_regs[2]);
407 
408 		/* Init SMMU */
409 		tegra_smmu_init();
410 
411 		/*
412 		 * Reset power state info for the last core doing SC7
413 		 * entry and exit, we set deepest power state as CC7
414 		 * and SC7 for SC7 entry which may not be requested by
415 		 * non-secure SW which controls idle states.
416 		 */
417 		cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
418 		cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC1;
419 		cstate_info.update_wake_mask = 1;
420 		mce_update_cstate_info(&cstate_info);
421 	}
422 
423 	return PSCI_E_SUCCESS;
424 }
425 
426 int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
427 {
428 	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;
429 
430 	(void)target_state;
431 
432 	/* Disable Denver's DCO operations */
433 	if (impl == DENVER_IMPL) {
434 		denver_disable_dco();
435 	}
436 
437 	/* Turn off CPU */
438 	(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
439 			(uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
440 
441 	return PSCI_E_SUCCESS;
442 }
443 
444 __dead2 void tegra_soc_prepare_system_off(void)
445 {
446 	/* power off the entire system */
447 	mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF);
448 
449 	wfi();
450 
451 	/* wait for the system to power down */
452 	for (;;) {
453 		;
454 	}
455 }
456 
457 int32_t tegra_soc_prepare_system_reset(void)
458 {
459 	mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT);
460 
461 	return PSCI_E_SUCCESS;
462 }
463