xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t186/plat_psci_handlers.c (revision 26d1e0c330981505315408c2537b87854d15d720)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/bl_common.h>
15 #include <common/debug.h>
16 #include <context.h>
17 #include <cortex_a57.h>
18 #include <denver.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/psci/psci.h>
21 #include <plat/common/platform.h>
22 
23 #include <bpmp_ipc.h>
24 #include <mce.h>
25 #include <security_engine.h>
26 #include <smmu.h>
27 #include <t18x_ari.h>
28 #include <tegra186_private.h>
29 #include <tegra_private.h>
30 
31 extern void memcpy16(void *dest, const void *src, unsigned int length);
32 
33 /* state id mask */
34 #define TEGRA186_STATE_ID_MASK		0xFU
35 /* constants to get power state's wake time */
36 #define TEGRA186_WAKE_TIME_MASK		0x0FFFFFF0U
37 #define TEGRA186_WAKE_TIME_SHIFT	4U
38 /* default core wake mask for CPU_SUSPEND */
39 #define TEGRA186_CORE_WAKE_MASK		0x180cU
40 /* context size to save during system suspend */
41 #define TEGRA186_SE_CONTEXT_SIZE	3U
42 
43 static uint32_t se_regs[TEGRA186_SE_CONTEXT_SIZE];
44 static struct tegra_psci_percpu_data {
45 	uint32_t wake_time;
46 } __aligned(CACHE_WRITEBACK_GRANULE) tegra_percpu_data[PLATFORM_CORE_COUNT];
47 
48 int32_t tegra_soc_validate_power_state(uint32_t power_state,
49 					psci_power_state_t *req_state)
50 {
51 	uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) & TEGRA186_STATE_ID_MASK;
52 	uint32_t cpu = plat_my_core_pos();
53 	int32_t ret = PSCI_E_SUCCESS;
54 
55 	/* save the core wake time (in TSC ticks)*/
56 	tegra_percpu_data[cpu].wake_time = (power_state & TEGRA186_WAKE_TIME_MASK)
57 			<< TEGRA186_WAKE_TIME_SHIFT;
58 
59 	/*
60 	 * Clean percpu_data[cpu] to DRAM. This needs to be done to ensure that
61 	 * the correct value is read in tegra_soc_pwr_domain_suspend(), which
62 	 * is called with caches disabled. It is possible to read a stale value
63 	 * from DRAM in that function, because the L2 cache is not flushed
64 	 * unless the cluster is entering CC6/CC7.
65 	 */
66 	clean_dcache_range((uint64_t)&tegra_percpu_data[cpu],
67 			sizeof(tegra_percpu_data[cpu]));
68 
69 	/* Sanity check the requested state id */
70 	switch (state_id) {
71 	case PSTATE_ID_CORE_IDLE:
72 	case PSTATE_ID_CORE_POWERDN:
73 
74 		/* Core powerdown request */
75 		req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id;
76 		req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id;
77 
78 		break;
79 
80 	default:
81 		ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
82 		ret = PSCI_E_INVALID_PARAMS;
83 		break;
84 	}
85 
86 	return ret;
87 }
88 
89 int32_t tegra_soc_cpu_standby(plat_local_state_t cpu_state)
90 {
91 	(void)cpu_state;
92 	return PSCI_E_SUCCESS;
93 }
94 
95 int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
96 {
97 	const plat_local_state_t *pwr_domain_state;
98 	uint8_t stateid_afflvl0, stateid_afflvl2;
99 	uint32_t cpu = plat_my_core_pos();
100 	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
101 	mce_cstate_info_t cstate_info = { 0 };
102 	uint64_t smmu_ctx_base;
103 	uint32_t val;
104 
105 	/* get the state ID */
106 	pwr_domain_state = target_state->pwr_domain_state;
107 	stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] &
108 		TEGRA186_STATE_ID_MASK;
109 	stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
110 		TEGRA186_STATE_ID_MASK;
111 
112 	if ((stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ||
113 	    (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN)) {
114 
115 		/* Enter CPU idle/powerdown */
116 		val = (stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ?
117 			(uint32_t)TEGRA_ARI_CORE_C6 : (uint32_t)TEGRA_ARI_CORE_C7;
118 		(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)val,
119 				tegra_percpu_data[cpu].wake_time, 0U);
120 
121 	} else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
122 
123 		/* save SE registers */
124 		se_regs[0] = mmio_read_32(TEGRA_SE0_BASE +
125 				SE_MUTEX_WATCHDOG_NS_LIMIT);
126 		se_regs[1] = mmio_read_32(TEGRA_RNG1_BASE +
127 				RNG_MUTEX_WATCHDOG_NS_LIMIT);
128 		se_regs[2] = mmio_read_32(TEGRA_PKA1_BASE +
129 				PKA_MUTEX_WATCHDOG_NS_LIMIT);
130 
131 		/* save 'Secure Boot' Processor Feature Config Register */
132 		val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG);
133 		mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val);
134 
135 		/* save SMMU context to TZDRAM */
136 		smmu_ctx_base = params_from_bl2->tzdram_base +
137 				tegra186_get_smmu_ctx_offset();
138 		tegra_smmu_save_context((uintptr_t)smmu_ctx_base);
139 
140 		/* Prepare for system suspend */
141 		cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
142 		cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC7;
143 		cstate_info.system_state_force = 1;
144 		cstate_info.update_wake_mask = 1;
145 		mce_update_cstate_info(&cstate_info);
146 
147 		/* Loop until system suspend is allowed */
148 		do {
149 			val = (uint32_t)mce_command_handler(
150 					(uint64_t)MCE_CMD_IS_SC7_ALLOWED,
151 					(uint64_t)TEGRA_ARI_CORE_C7,
152 					MCE_CORE_SLEEP_TIME_INFINITE,
153 					0U);
154 		} while (val == 0U);
155 
156 		/* Instruct the MCE to enter system suspend state */
157 		(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
158 			(uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
159 
160 		/* set system suspend state for house-keeping */
161 		tegra186_set_system_suspend_entry();
162 
163 	} else {
164 		; /* do nothing */
165 	}
166 
167 	return PSCI_E_SUCCESS;
168 }
169 
170 /*******************************************************************************
171  * Helper function to check if this is the last ON CPU in the cluster
172  ******************************************************************************/
173 static bool tegra_last_cpu_in_cluster(const plat_local_state_t *states,
174 			uint32_t ncpu)
175 {
176 	plat_local_state_t target;
177 	bool last_on_cpu = true;
178 	uint32_t num_cpus = ncpu, pos = 0;
179 
180 	do {
181 		target = states[pos];
182 		if (target != PLAT_MAX_OFF_STATE) {
183 			last_on_cpu = false;
184 		}
185 		--num_cpus;
186 		pos++;
187 	} while (num_cpus != 0U);
188 
189 	return last_on_cpu;
190 }
191 
192 /*******************************************************************************
193  * Helper function to get target power state for the cluster
194  ******************************************************************************/
195 static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states,
196 			uint32_t ncpu)
197 {
198 	uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK;
199 	uint32_t cpu = plat_my_core_pos();
200 	int32_t ret;
201 	plat_local_state_t target = states[core_pos];
202 	mce_cstate_info_t cstate_info = { 0 };
203 
204 	/* CPU suspend */
205 	if (target == PSTATE_ID_CORE_POWERDN) {
206 		/* Program default wake mask */
207 		cstate_info.wake_mask = TEGRA186_CORE_WAKE_MASK;
208 		cstate_info.update_wake_mask = 1;
209 		mce_update_cstate_info(&cstate_info);
210 
211 		/* Check if CCx state is allowed. */
212 		ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED,
213 				(uint64_t)TEGRA_ARI_CORE_C7,
214 				tegra_percpu_data[cpu].wake_time,
215 				0U);
216 		if (ret == 0) {
217 			target = PSCI_LOCAL_STATE_RUN;
218 		}
219 	}
220 
221 	/* CPU off */
222 	if (target == PLAT_MAX_OFF_STATE) {
223 		/* Enable cluster powerdn from last CPU in the cluster */
224 		if (tegra_last_cpu_in_cluster(states, ncpu)) {
225 			/* Enable CC7 state and turn off wake mask */
226 			cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
227 			cstate_info.update_wake_mask = 1;
228 			mce_update_cstate_info(&cstate_info);
229 
230 			/* Check if CCx state is allowed. */
231 			ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED,
232 						  (uint64_t)TEGRA_ARI_CORE_C7,
233 						  MCE_CORE_SLEEP_TIME_INFINITE,
234 						  0U);
235 			if (ret == 0) {
236 				target = PSCI_LOCAL_STATE_RUN;
237 			}
238 
239 		} else {
240 
241 			/* Turn off wake_mask */
242 			cstate_info.update_wake_mask = 1;
243 			mce_update_cstate_info(&cstate_info);
244 			target = PSCI_LOCAL_STATE_RUN;
245 		}
246 	}
247 
248 	return target;
249 }
250 
251 /*******************************************************************************
252  * Platform handler to calculate the proper target power level at the
253  * specified affinity level
254  ******************************************************************************/
255 plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl,
256 					     const plat_local_state_t *states,
257 					     uint32_t ncpu)
258 {
259 	plat_local_state_t target = PSCI_LOCAL_STATE_RUN;
260 	uint32_t cpu = plat_my_core_pos();
261 
262 	/* System Suspend */
263 	if ((lvl == (uint32_t)MPIDR_AFFLVL2) &&
264 	    (states[cpu] == PSTATE_ID_SOC_POWERDN)) {
265 		target = PSTATE_ID_SOC_POWERDN;
266 	}
267 
268 	/* CPU off, CPU suspend */
269 	if (lvl == (uint32_t)MPIDR_AFFLVL1) {
270 		target = tegra_get_afflvl1_pwr_state(states, ncpu);
271 	}
272 
273 	/* target cluster/system state */
274 	return target;
275 }
276 
277 int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state)
278 {
279 	const plat_local_state_t *pwr_domain_state =
280 		target_state->pwr_domain_state;
281 	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
282 	uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
283 		TEGRA186_STATE_ID_MASK;
284 	uint64_t val;
285 	uint64_t src_len_in_bytes = (uint64_t)(((uintptr_t)(&__BL31_END__) -
286 					(uintptr_t)BL31_BASE));
287 	int32_t ret;
288 
289 	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
290 		val = params_from_bl2->tzdram_base +
291 		      tegra186_get_cpu_reset_handler_size();
292 
293 		/* Initialise communication channel with BPMP */
294 		assert(tegra_bpmp_ipc_init() == 0);
295 
296 		/* Enable SE clock */
297 		ret = tegra_bpmp_ipc_enable_clock(TEGRA_CLK_SE);
298 		if (ret != 0) {
299 			ERROR("Failed to enable clock\n");
300 			return ret;
301 		}
302 
303 		/*
304 		 * Generate/save SHA256 of ATF during SC7 entry
305 		 */
306 		if (tegra_se_save_sha256_hash(BL31_BASE,
307 					(uint32_t)src_len_in_bytes) != 0) {
308 			ERROR("Hash calculation failed. Reboot\n");
309 			(void)tegra_soc_prepare_system_reset();
310 		}
311 
312 		/*
313 		 * The TZRAM loses power when we enter system suspend. To
314 		 * allow graceful exit from system suspend, we need to copy
315 		 * BL3-1 over to TZDRAM.
316 		 */
317 		val = params_from_bl2->tzdram_base +
318 			tegra186_get_cpu_reset_handler_size();
319 		memcpy16((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE,
320 			 (uintptr_t)BL31_END - (uintptr_t)BL31_BASE);
321 
322 		ret = tegra_bpmp_ipc_disable_clock(TEGRA_CLK_SE);
323 		if (ret != 0) {
324 			ERROR("Failed to disable clock\n");
325 			return ret;
326 		}
327 	}
328 
329 	return PSCI_E_SUCCESS;
330 }
331 
332 int32_t tegra_soc_pwr_domain_suspend_pwrdown_early(const psci_power_state_t *target_state)
333 {
334 	return PSCI_E_NOT_SUPPORTED;
335 }
336 
337 int32_t tegra_soc_pwr_domain_on(u_register_t mpidr)
338 {
339 	int32_t ret = PSCI_E_SUCCESS;
340 	uint64_t target_cpu = mpidr & MPIDR_CPU_MASK;
341 	uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >>
342 			MPIDR_AFFINITY_BITS;
343 
344 	if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) {
345 
346 		ERROR("%s: unsupported CPU (0x%lx)\n", __func__, mpidr);
347 		ret = PSCI_E_NOT_PRESENT;
348 
349 	} else {
350 		/* construct the target CPU # */
351 		target_cpu |= (target_cluster << 2);
352 
353 		(void)mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U);
354 	}
355 
356 	return ret;
357 }
358 
359 int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
360 {
361 	uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL];
362 	uint8_t stateid_afflvl0 = target_state->pwr_domain_state[MPIDR_AFFLVL0];
363 	mce_cstate_info_t cstate_info = { 0 };
364 	uint64_t impl, val;
365 	const plat_params_from_bl2_t *plat_params = bl31_get_plat_params();
366 
367 	impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
368 
369 	/*
370 	 * Enable ECC and Parity Protection for Cortex-A57 CPUs (Tegra186
371 	 * A02p and beyond).
372 	 */
373 	if ((plat_params->l2_ecc_parity_prot_dis != 1) && (impl != DENVER_IMPL)) {
374 
375 		val = read_l2ctlr_el1();
376 		val |= CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT;
377 		write_l2ctlr_el1(val);
378 	}
379 
380 	/*
381 	 * Reset power state info for CPUs when onlining, we set
382 	 * deepest power when offlining a core but that may not be
383 	 * requested by non-secure sw which controls idle states. It
384 	 * will re-init this info from non-secure software when the
385 	 * core come online.
386 	 */
387 	if (stateid_afflvl0 == PLAT_MAX_OFF_STATE) {
388 
389 		cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC1;
390 		cstate_info.update_wake_mask = 1;
391 		mce_update_cstate_info(&cstate_info);
392 	}
393 
394 	/*
395 	 * Check if we are exiting from deep sleep and restore SE
396 	 * context if we are.
397 	 */
398 	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
399 
400 		mmio_write_32(TEGRA_SE0_BASE + SE_MUTEX_WATCHDOG_NS_LIMIT,
401 			se_regs[0]);
402 		mmio_write_32(TEGRA_RNG1_BASE + RNG_MUTEX_WATCHDOG_NS_LIMIT,
403 			se_regs[1]);
404 		mmio_write_32(TEGRA_PKA1_BASE + PKA_MUTEX_WATCHDOG_NS_LIMIT,
405 			se_regs[2]);
406 
407 		/* Init SMMU */
408 		tegra_smmu_init();
409 
410 		/*
411 		 * Reset power state info for the last core doing SC7
412 		 * entry and exit, we set deepest power state as CC7
413 		 * and SC7 for SC7 entry which may not be requested by
414 		 * non-secure SW which controls idle states.
415 		 */
416 		cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
417 		cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC1;
418 		cstate_info.update_wake_mask = 1;
419 		mce_update_cstate_info(&cstate_info);
420 	}
421 
422 	return PSCI_E_SUCCESS;
423 }
424 
425 int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
426 {
427 	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;
428 
429 	(void)target_state;
430 
431 	/* Disable Denver's DCO operations */
432 	if (impl == DENVER_IMPL) {
433 		denver_disable_dco();
434 	}
435 
436 	/* Turn off CPU */
437 	(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
438 			(uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
439 
440 	return PSCI_E_SUCCESS;
441 }
442 
443 __dead2 void tegra_soc_prepare_system_off(void)
444 {
445 	/* power off the entire system */
446 	mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF);
447 
448 	wfi();
449 
450 	/* wait for the system to power down */
451 	for (;;) {
452 		;
453 	}
454 }
455 
456 int32_t tegra_soc_prepare_system_reset(void)
457 {
458 	mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT);
459 
460 	return PSCI_E_SUCCESS;
461 }
462