xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t186/drivers/mce/ari.c (revision c3cf06f1a3a9b9ee8ac7a0ae505f95c45f7dca84)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <delay_timer.h>
12 #include <denver.h>
13 #include <errno.h>
14 #include <mce_private.h>
15 #include <mmio.h>
16 #include <platform.h>
17 #include <t18x_ari.h>
18 
19 /*******************************************************************************
20  * Register offsets for ARI request/results
21  ******************************************************************************/
22 #define ARI_REQUEST			0x0U
23 #define ARI_REQUEST_EVENT_MASK		0x4U
24 #define ARI_STATUS			0x8U
25 #define ARI_REQUEST_DATA_LO		0xCU
26 #define ARI_REQUEST_DATA_HI		0x10U
27 #define ARI_RESPONSE_DATA_LO		0x14U
28 #define ARI_RESPONSE_DATA_HI		0x18U
29 
30 /* Status values for the current request */
31 #define ARI_REQ_PENDING			1U
32 #define ARI_REQ_ONGOING			3U
33 #define ARI_REQUEST_VALID_BIT		(1U << 8)
34 #define ARI_EVT_MASK_STANDBYWFI_BIT	(1U << 7)
35 
36 /* default timeout (ms) to wait for ARI completion */
37 #define ARI_MAX_RETRY_COUNT		2000
38 
39 /*******************************************************************************
40  * ARI helper functions
41  ******************************************************************************/
42 static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
43 {
44 	return mmio_read_32((uint64_t)ari_base + (uint64_t)reg);
45 }
46 
47 static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
48 {
49 	mmio_write_32((uint64_t)ari_base + (uint64_t)reg, val);
50 }
51 
52 static inline uint32_t ari_get_request_low(uint32_t ari_base)
53 {
54 	return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
55 }
56 
57 static inline uint32_t ari_get_request_high(uint32_t ari_base)
58 {
59 	return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
60 }
61 
62 static inline uint32_t ari_get_response_low(uint32_t ari_base)
63 {
64 	return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
65 }
66 
67 static inline uint32_t ari_get_response_high(uint32_t ari_base)
68 {
69 	return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
70 }
71 
72 static inline void ari_clobber_response(uint32_t ari_base)
73 {
74 	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
75 	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
76 }
77 
78 static int32_t ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
79 		uint32_t lo, uint32_t hi)
80 {
81 	uint32_t retries = ARI_MAX_RETRY_COUNT;
82 	uint32_t status;
83 	int32_t ret = 0;
84 
85 	/* program the request, event_mask, hi and lo registers */
86 	ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
87 	ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
88 	ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
89 	ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);
90 
91 	/*
92 	 * For commands that have an event trigger, we should bypass
93 	 * ARI_STATUS polling, since MCE is waiting for SW to trigger
94 	 * the event.
95 	 */
96 	if (evt_mask != 0U) {
97 		ret = 0;
98 	} else {
99 		/* For shutdown/reboot commands, we dont have to check for timeouts */
100 		if ((req == (uint32_t)TEGRA_ARI_MISC_CCPLEX) &&
101 		    ((lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) ||
102 		     (lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) {
103 				ret = 0;
104 		} else {
105 			/*
106 			 * Wait for the command response for not more than the timeout
107 			 */
108 			while (retries != 0U) {
109 
110 				/* read the command status */
111 				status = ari_read_32(ari_base, ARI_STATUS);
112 				if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U) {
113 					break;
114 				}
115 
116 				/* delay 1 ms */
117 				mdelay(1);
118 
119 				/* decrement the retry count */
120 				retries--;
121 			}
122 
123 			/* assert if the command timed out */
124 			if (retries == 0U) {
125 				ERROR("ARI request timed out: req %d on CPU %d\n",
126 					req, plat_my_core_pos());
127 				assert(retries != 0U);
128 			}
129 		}
130 	}
131 
132 	return ret;
133 }
134 
135 int32_t ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
136 {
137 	int32_t ret = 0;
138 
139 	/* check for allowed power state */
140 	if ((state != TEGRA_ARI_CORE_C0) &&
141 	    (state != TEGRA_ARI_CORE_C1) &&
142 	    (state != TEGRA_ARI_CORE_C6) &&
143 	    (state != TEGRA_ARI_CORE_C7)) {
144 		ERROR("%s: unknown cstate (%d)\n", __func__, state);
145 		ret = EINVAL;
146 	} else {
147 		/* clean the previous response state */
148 		ari_clobber_response(ari_base);
149 
150 		/* Enter the cstate, to be woken up after wake_time (TSC ticks) */
151 		ret = ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
152 		TEGRA_ARI_ENTER_CSTATE, state, wake_time);
153 	}
154 
155 	return ret;
156 }
157 
158 int32_t ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
159 	uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
160 	uint8_t update_wake_mask)
161 {
162 	uint32_t val = 0U;
163 
164 	/* clean the previous response state */
165 	ari_clobber_response(ari_base);
166 
167 	/* update CLUSTER_CSTATE? */
168 	if (cluster != 0U) {
169 		val |= (cluster & (uint32_t)CLUSTER_CSTATE_MASK) |
170 			(uint32_t)CLUSTER_CSTATE_UPDATE_BIT;
171 	}
172 
173 	/* update CCPLEX_CSTATE? */
174 	if (ccplex != 0U) {
175 		val |= ((ccplex & (uint32_t)CCPLEX_CSTATE_MASK) << (uint32_t)CCPLEX_CSTATE_SHIFT) |
176 			(uint32_t)CCPLEX_CSTATE_UPDATE_BIT;
177 	}
178 
179 	/* update SYSTEM_CSTATE? */
180 	if (system != 0U) {
181 		val |= ((system & (uint32_t)SYSTEM_CSTATE_MASK) << (uint32_t)SYSTEM_CSTATE_SHIFT) |
182 		       (((uint32_t)sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
183 			(uint32_t)SYSTEM_CSTATE_UPDATE_BIT);
184 	}
185 
186 	/* update wake mask value? */
187 	if (update_wake_mask != 0U) {
188 		val |= (uint32_t)CSTATE_WAKE_MASK_UPDATE_BIT;
189 	}
190 
191 	/* set the updated cstate info */
192 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CSTATE_INFO, val,
193 			wake_mask);
194 }
195 
196 int32_t ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
197 {
198 	int32_t ret = 0;
199 
200 	/* sanity check crossover type */
201 	if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
202 	    (type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) {
203 		ret = EINVAL;
204 	} else {
205 		/* clean the previous response state */
206 		ari_clobber_response(ari_base);
207 
208 		/* update crossover threshold time */
209 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CROSSOVER,
210 			type, time);
211 	}
212 
213 	return ret;
214 }
215 
216 uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
217 {
218 	int32_t ret;
219 	uint64_t result;
220 
221 	/* sanity check crossover type */
222 	if (state == 0U) {
223 		result = EINVAL;
224 	} else {
225 		/* clean the previous response state */
226 		ari_clobber_response(ari_base);
227 
228 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_CSTATE_STATS, state, 0U);
229 		if (ret != 0) {
230 			result = EINVAL;
231 		} else {
232 			result = (uint64_t)ari_get_response_low(ari_base);
233 		}
234 	}
235 	return result;
236 }
237 
238 int32_t ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
239 {
240 	/* clean the previous response state */
241 	ari_clobber_response(ari_base);
242 
243 	/* write the cstate stats */
244 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_WRITE_CSTATE_STATS, state,
245 			stats);
246 }
247 
248 uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
249 {
250 	uint64_t resp;
251 	int32_t ret;
252 	uint32_t local_data = data;
253 
254 	/* clean the previous response state */
255 	ari_clobber_response(ari_base);
256 
257 	/* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
258 	if (cmd != TEGRA_ARI_MISC_ECHO) {
259 		local_data = 0U;
260 	}
261 
262 	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC, cmd, local_data);
263 	if (ret != 0) {
264 		resp = (uint64_t)ret;
265 	} else {
266 		/* get the command response */
267 		resp = ari_get_response_low(ari_base);
268 		resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);
269 	}
270 
271 	return resp;
272 }
273 
274 int32_t ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
275 {
276 	int32_t ret;
277 	uint32_t result;
278 
279 	/* clean the previous response state */
280 	ari_clobber_response(ari_base);
281 
282 	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7U,
283 			wake_time);
284 	if (ret != 0) {
285 		ERROR("%s: failed (%d)\n", __func__, ret);
286 		result = 0U;
287 	} else {
288 		result = ari_get_response_low(ari_base) & 0x1U;
289 	}
290 
291 	/* 1 = CCx allowed, 0 = CCx not allowed */
292 	return (int32_t)result;
293 }
294 
295 int32_t ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
296 {
297 	int32_t ret, result;
298 
299 	/* check for allowed power state */
300 	if ((state != TEGRA_ARI_CORE_C0) &&
301 	    (state != TEGRA_ARI_CORE_C1) &&
302 	    (state != TEGRA_ARI_CORE_C6) &&
303 	    (state != TEGRA_ARI_CORE_C7)) {
304 		ERROR("%s: unknown cstate (%d)\n", __func__, state);
305 		result = EINVAL;
306 	} else {
307 		/* clean the previous response state */
308 		ari_clobber_response(ari_base);
309 
310 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_SC7_ALLOWED, state,
311 				wake_time);
312 		if (ret != 0) {
313 			ERROR("%s: failed (%d)\n", __func__, ret);
314 			result = 0;
315 		} else {
316 			/* 1 = SC7 allowed, 0 = SC7 not allowed */
317 			result = (ari_get_response_low(ari_base) != 0U) ? 1 : 0;
318 		}
319 	}
320 
321 	return result;
322 }
323 
324 int32_t ari_online_core(uint32_t ari_base, uint32_t core)
325 {
326 	uint64_t cpu = read_mpidr() & (uint64_t)(MPIDR_CPU_MASK);
327 	uint64_t cluster = (read_mpidr() & (uint64_t)(MPIDR_CLUSTER_MASK)) >>
328 			   (uint64_t)(MPIDR_AFFINITY_BITS);
329 	uint64_t impl = (read_midr() >> (uint64_t)MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;
330 	int32_t ret;
331 
332 	/* construct the current CPU # */
333 	cpu |= (cluster << 2);
334 
335 	/* sanity check target core id */
336 	if ((core >= MCE_CORE_ID_MAX) || (cpu == (uint64_t)core)) {
337 		ERROR("%s: unsupported core id (%d)\n", __func__, core);
338 		ret = EINVAL;
339 	} else {
340 		/*
341 		 * The Denver cluster has 2 CPUs only - 0, 1.
342 		 */
343 		if ((impl == (uint32_t)DENVER_IMPL) &&
344 		    ((core == 2U) || (core == 3U))) {
345 			ERROR("%s: unknown core id (%d)\n", __func__, core);
346 			ret = EINVAL;
347 		} else {
348 			/* clean the previous response state */
349 			ari_clobber_response(ari_base);
350 			ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_ONLINE_CORE, core, 0U);
351 		}
352 	}
353 
354 	return ret;
355 }
356 
357 int32_t ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
358 {
359 	uint32_t val;
360 
361 	/* clean the previous response state */
362 	ari_clobber_response(ari_base);
363 
364 	/*
365 	 * If the enable bit is cleared, Auto-CC3 will be disabled by setting
366 	 * the SW visible voltage/frequency request registers for all non
367 	 * floorswept cores valid independent of StandbyWFI and disabling
368 	 * the IDLE voltage/frequency request register. If set, Auto-CC3
369 	 * will be enabled by setting the ARM SW visible voltage/frequency
370 	 * request registers for all non floorswept cores to be enabled by
371 	 * StandbyWFI or the equivalent signal, and always keeping the IDLE
372 	 * voltage/frequency request register enabled.
373 	 */
374 	val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
375 		((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
376 		((enable != 0U) ? MCE_AUTO_CC3_ENABLE_BIT : 0U));
377 
378 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_CC3_CTRL, val, 0U);
379 }
380 
381 int32_t ari_reset_vector_update(uint32_t ari_base)
382 {
383 	/* clean the previous response state */
384 	ari_clobber_response(ari_base);
385 
386 	/*
387 	 * Need to program the CPU reset vector one time during cold boot
388 	 * and SC7 exit
389 	 */
390 	(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_COPY_MISCREG_AA64_RST, 0U, 0U);
391 
392 	return 0;
393 }
394 
395 int32_t ari_roc_flush_cache_trbits(uint32_t ari_base)
396 {
397 	/* clean the previous response state */
398 	ari_clobber_response(ari_base);
399 
400 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS,
401 			0U, 0U);
402 }
403 
404 int32_t ari_roc_flush_cache(uint32_t ari_base)
405 {
406 	/* clean the previous response state */
407 	ari_clobber_response(ari_base);
408 
409 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY,
410 			0U, 0U);
411 }
412 
413 int32_t ari_roc_clean_cache(uint32_t ari_base)
414 {
415 	/* clean the previous response state */
416 	ari_clobber_response(ari_base);
417 
418 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY,
419 			0U, 0U);
420 }
421 
422 uint64_t ari_read_write_mca(uint32_t ari_base, uint64_t cmd, uint64_t *data)
423 {
424 	uint64_t mca_arg_data, result = 0;
425 	uint32_t resp_lo, resp_hi;
426 	uint32_t mca_arg_err, mca_arg_finish;
427 	int32_t ret;
428 
429 	/* Set data (write) */
430 	mca_arg_data = (data != NULL) ? *data : 0ULL;
431 
432 	/* Set command */
433 	ari_write_32(ari_base, (uint32_t)cmd, ARI_RESPONSE_DATA_LO);
434 	ari_write_32(ari_base, (uint32_t)(cmd >> 32U), ARI_RESPONSE_DATA_HI);
435 
436 	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MCA,
437 			       (uint32_t)mca_arg_data,
438 			       (uint32_t)(mca_arg_data >> 32U));
439 	if (ret == 0) {
440 		resp_lo = ari_get_response_low(ari_base);
441 		resp_hi = ari_get_response_high(ari_base);
442 
443 		mca_arg_err = resp_lo & MCA_ARG_ERROR_MASK;
444 		mca_arg_finish = (resp_hi >> MCA_ARG_FINISH_SHIFT) &
445 				 MCA_ARG_FINISH_MASK;
446 
447 		if (mca_arg_finish == 0U) {
448 			result = (uint64_t)mca_arg_err;
449 		} else {
450 			if (data != NULL) {
451 				resp_lo = ari_get_request_low(ari_base);
452 				resp_hi = ari_get_request_high(ari_base);
453 				*data = ((uint64_t)resp_hi << 32U) |
454 					 (uint64_t)resp_lo;
455 			}
456 		}
457 	}
458 
459 	return result;
460 }
461 
462 int32_t ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
463 {
464 	int32_t ret = 0;
465 	/* sanity check GSC ID */
466 	if (gsc_idx > (uint32_t)TEGRA_ARI_GSC_VPR_IDX) {
467 		ret = EINVAL;
468 	} else {
469 		/* clean the previous response state */
470 		ari_clobber_response(ari_base);
471 
472 		/*
473 		 * The MCE code will read the GSC carveout value, corrseponding to
474 		 * the ID, from the MC registers and update the internal GSC registers
475 		 * of the CCPLEX.
476 		 */
477 		(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0U);
478 	}
479 
480 	return ret;
481 }
482 
483 void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
484 {
485 	/* clean the previous response state */
486 	ari_clobber_response(ari_base);
487 
488 	/*
489 	 * The MCE will shutdown or restart the entire system
490 	 */
491 	(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, state_idx, 0U);
492 }
493 
494 int32_t ari_read_write_uncore_perfmon(uint32_t ari_base, uint64_t req,
495 		uint64_t *data)
496 {
497 	int32_t ret, result;
498 	uint32_t val;
499 	uint8_t req_cmd, req_status;
500 
501 	req_cmd = (uint8_t)(req >> UNCORE_PERFMON_CMD_SHIFT);
502 
503 	/* clean the previous response state */
504 	ari_clobber_response(ari_base);
505 
506 	/* sanity check input parameters */
507 	if ((req_cmd == UNCORE_PERFMON_CMD_READ) && (data == NULL)) {
508 		ERROR("invalid parameters\n");
509 		result = EINVAL;
510 	} else {
511 		/*
512 		 * For "write" commands get the value that has to be written
513 		 * to the uncore perfmon registers
514 		 */
515 		val = (req_cmd == UNCORE_PERFMON_CMD_WRITE) ?
516 			(uint32_t)*data : 0U;
517 
518 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_PERFMON, val,
519 				       (uint32_t)req);
520 		if (ret != 0) {
521 			result = ret;
522 		} else {
523 			/* read the command status value */
524 			req_status = (uint8_t)ari_get_response_high(ari_base) &
525 					 UNCORE_PERFMON_RESP_STATUS_MASK;
526 
527 			/*
528 			 * For "read" commands get the data from the uncore
529 			 * perfmon registers
530 			 */
531 			req_status >>= UNCORE_PERFMON_RESP_STATUS_SHIFT;
532 			if ((req_status == 0U) && (req_cmd == UNCORE_PERFMON_CMD_READ)) {
533 				*data = ari_get_response_low(ari_base);
534 			}
535 			result = (int32_t)req_status;
536 		}
537 	}
538 
539 	return result;
540 }
541 
542 void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
543 {
544 	/*
545 	 * This invokes the ARI_MISC_CCPLEX commands. This can be
546 	 * used to enable/disable coresight clock gating.
547 	 */
548 
549 	if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) ||
550 		((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
551 		(value > 1U))) {
552 		ERROR("%s: invalid parameters \n", __func__);
553 	} else {
554 		/* clean the previous response state */
555 		ari_clobber_response(ari_base);
556 		(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, index, value);
557 	}
558 }
559