xref: /rk3399_ARM-atf/plat/nvidia/tegra/drivers/memctrl/memctrl_v2.c (revision e9b9c2c830f4f65a121876e00c61f3167501f5b7)
1 /*
2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2019-2020, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <string.h>
10 
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <lib/mmio.h>
15 #include <lib/utils.h>
16 #include <lib/xlat_tables/xlat_tables_v2.h>
17 
18 #include <mce.h>
19 #include <memctrl.h>
20 #include <memctrl_v2.h>
21 #include <smmu.h>
22 #include <tegra_def.h>
23 #include <tegra_platform.h>
24 #include <tegra_private.h>
25 
26 /* Video Memory base and size (live values) */
27 static uint64_t video_mem_base;
28 static uint64_t video_mem_size_mb;
29 
30 /*
31  * Init Memory controller during boot.
32  */
33 void tegra_memctrl_setup(void)
34 {
35 	uint32_t val;
36 	const uint32_t *mc_streamid_override_regs;
37 	uint32_t num_streamid_override_regs;
38 	const mc_streamid_security_cfg_t *mc_streamid_sec_cfgs;
39 	uint32_t num_streamid_sec_cfgs;
40 	const tegra_mc_settings_t *plat_mc_settings = tegra_get_mc_settings();
41 	uint32_t i;
42 
43 	INFO("Tegra Memory Controller (v2)\n");
44 
45 	/* Program the SMMU pagesize */
46 	tegra_smmu_init();
47 
48 	/* Get the settings from the platform */
49 	assert(plat_mc_settings != NULL);
50 	mc_streamid_override_regs = plat_mc_settings->streamid_override_cfg;
51 	num_streamid_override_regs = plat_mc_settings->num_streamid_override_cfgs;
52 	mc_streamid_sec_cfgs = plat_mc_settings->streamid_security_cfg;
53 	num_streamid_sec_cfgs = plat_mc_settings->num_streamid_security_cfgs;
54 
55 	/* Program all the Stream ID overrides */
56 	for (i = 0; i < num_streamid_override_regs; i++)
57 		tegra_mc_streamid_write_32(mc_streamid_override_regs[i],
58 			MC_STREAM_ID_MAX);
59 
60 	/* Program the security config settings for all Stream IDs */
61 	for (i = 0; i < num_streamid_sec_cfgs; i++) {
62 		val = mc_streamid_sec_cfgs[i].override_enable << 16 |
63 		      mc_streamid_sec_cfgs[i].override_client_inputs << 8 |
64 		      mc_streamid_sec_cfgs[i].override_client_ns_flag << 0;
65 		tegra_mc_streamid_write_32(mc_streamid_sec_cfgs[i].offset, val);
66 	}
67 
68 	/*
69 	 * All requests at boot time, and certain requests during
70 	 * normal run time, are physically addressed and must bypass
71 	 * the SMMU. The client hub logic implements a hardware bypass
72 	 * path around the Translation Buffer Units (TBU). During
73 	 * boot-time, the SMMU_BYPASS_CTRL register (which defaults to
74 	 * TBU_BYPASS mode) will be used to steer all requests around
75 	 * the uninitialized TBUs. During normal operation, this register
76 	 * is locked into TBU_BYPASS_SID config, which routes requests
77 	 * with special StreamID 0x7f on the bypass path and all others
78 	 * through the selected TBU. This is done to disable SMMU Bypass
79 	 * mode, as it could be used to circumvent SMMU security checks.
80 	 */
81 	tegra_mc_write_32(MC_SMMU_BYPASS_CONFIG,
82 			  MC_SMMU_BYPASS_CONFIG_SETTINGS);
83 	assert(tegra_mc_read_32(MC_SMMU_BYPASS_CONFIG)
84 		 == MC_SMMU_BYPASS_CONFIG_SETTINGS);
85 
86 	/*
87 	 * Re-configure MSS to allow ROC to deal with ordering of the
88 	 * Memory Controller traffic. This is needed as the Memory Controller
89 	 * boots with MSS having all control, but ROC provides a performance
90 	 * boost as compared to MSS.
91 	 */
92 	if (plat_mc_settings->reconfig_mss_clients != NULL) {
93 		plat_mc_settings->reconfig_mss_clients();
94 	}
95 
96 	/* Program overrides for MC transactions */
97 	if (plat_mc_settings->set_txn_overrides != NULL) {
98 		plat_mc_settings->set_txn_overrides();
99 	}
100 }
101 
102 /*
103  * Restore Memory Controller settings after "System Suspend"
104  */
105 void tegra_memctrl_restore_settings(void)
106 {
107 	const tegra_mc_settings_t *plat_mc_settings = tegra_get_mc_settings();
108 
109 	assert(plat_mc_settings != NULL);
110 
111 	/*
112 	 * Re-configure MSS to allow ROC to deal with ordering of the
113 	 * Memory Controller traffic. This is needed as the Memory Controller
114 	 * resets during System Suspend with MSS having all control, but ROC
115 	 * provides a performance boost as compared to MSS.
116 	 */
117 	if (plat_mc_settings->reconfig_mss_clients != NULL) {
118 		plat_mc_settings->reconfig_mss_clients();
119 	}
120 
121 	/* Program overrides for MC transactions */
122 	if (plat_mc_settings->set_txn_overrides != NULL) {
123 		plat_mc_settings->set_txn_overrides();
124 	}
125 
126 	/* video memory carveout region */
127 	if (video_mem_base != 0ULL) {
128 		tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO,
129 				  (uint32_t)video_mem_base);
130 		assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_LO)
131 			 == (uint32_t)video_mem_base);
132 		tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
133 				  (uint32_t)(video_mem_base >> 32));
134 		assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_HI)
135 			 == (uint32_t)(video_mem_base >> 32));
136 		tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB,
137 				  (uint32_t)video_mem_size_mb);
138 		assert(tegra_mc_read_32(MC_VIDEO_PROTECT_SIZE_MB)
139 			 == (uint32_t)video_mem_size_mb);
140 
141 		/*
142 		 * MCE propagates the VideoMem configuration values across the
143 		 * CCPLEX.
144 		 */
145 		mce_update_gsc_videomem();
146 	}
147 }
148 
149 /*
150  * Secure the BL31 DRAM aperture.
151  *
152  * phys_base = physical base of TZDRAM aperture
153  * size_in_bytes = size of aperture in bytes
154  */
155 void tegra_memctrl_tzdram_setup(uint64_t phys_base, uint32_t size_in_bytes)
156 {
157 	/*
158 	 * Perform platform specific steps.
159 	 */
160 	plat_memctrl_tzdram_setup(phys_base, size_in_bytes);
161 }
162 
163 /*
164  * Secure the BL31 TZRAM aperture.
165  *
166  * phys_base = physical base of TZRAM aperture
167  * size_in_bytes = size of aperture in bytes
168  */
169 void tegra_memctrl_tzram_setup(uint64_t phys_base, uint32_t size_in_bytes)
170 {
171 	; /* do nothing */
172 }
173 
174 /*
175  * Save MC settings before "System Suspend" to TZDRAM
176  */
177 void tegra_mc_save_context(uint64_t mc_ctx_addr)
178 {
179 	const tegra_mc_settings_t *plat_mc_settings = tegra_get_mc_settings();
180 	uint32_t i, num_entries = 0;
181 	mc_regs_t *mc_ctx_regs;
182 	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
183 	uint64_t tzdram_base = params_from_bl2->tzdram_base;
184 	uint64_t tzdram_end = tzdram_base + params_from_bl2->tzdram_size;
185 
186 	assert((mc_ctx_addr >= tzdram_base) && (mc_ctx_addr <= tzdram_end));
187 
188 	/* get MC context table */
189 	mc_ctx_regs = plat_mc_settings->get_mc_system_suspend_ctx();
190 	assert(mc_ctx_regs != NULL);
191 
192 	/*
193 	 * mc_ctx_regs[0].val contains the size of the context table minus
194 	 * the last entry. Sanity check the table size before we start with
195 	 * the context save operation.
196 	 */
197 	while (mc_ctx_regs[num_entries].reg != 0xFFFFFFFFU) {
198 		num_entries++;
199 	}
200 
201 	/* panic if the sizes do not match */
202 	if (num_entries != mc_ctx_regs[0].val) {
203 		ERROR("MC context size mismatch!");
204 		panic();
205 	}
206 
207 	/* save MC register values */
208 	for (i = 1U; i < num_entries; i++) {
209 		mc_ctx_regs[i].val = mmio_read_32(mc_ctx_regs[i].reg);
210 	}
211 
212 	/* increment by 1 to take care of the last entry */
213 	num_entries++;
214 
215 	/* Save MC config settings */
216 	(void)memcpy((void *)mc_ctx_addr, mc_ctx_regs,
217 			sizeof(mc_regs_t) * num_entries);
218 
219 	/* save the MC table address */
220 	mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_LO,
221 		(uint32_t)mc_ctx_addr);
222 	assert(mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_LO)
223 		== (uint32_t)mc_ctx_addr);
224 	mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_HI,
225 		(uint32_t)(mc_ctx_addr >> 32));
226 	assert(mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_HI)
227 		== (uint32_t)(mc_ctx_addr >> 32));
228 }
229 
230 static void tegra_lock_videomem_nonoverlap(uint64_t phys_base,
231 					   uint64_t size_in_bytes)
232 {
233 	uint32_t index;
234 	uint64_t total_128kb_blocks = size_in_bytes >> 17;
235 	uint64_t residual_4kb_blocks = (size_in_bytes & (uint32_t)0x1FFFF) >> 12;
236 	uint64_t val;
237 
238 	/*
239 	 * Reset the access configuration registers to restrict access to
240 	 * old Videomem aperture
241 	 */
242 	for (index = MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0;
243 	     index < ((uint32_t)MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0 + (uint32_t)MC_GSC_CONFIG_REGS_SIZE);
244 	     index += 4U) {
245 		tegra_mc_write_32(index, 0);
246 	}
247 
248 	/*
249 	 * Set the base. It must be 4k aligned, at least.
250 	 */
251 	assert((phys_base & (uint64_t)0xFFF) == 0U);
252 	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, (uint32_t)phys_base);
253 	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI,
254 		(uint32_t)(phys_base >> 32) & (uint32_t)MC_GSC_BASE_HI_MASK);
255 
256 	/*
257 	 * Set the aperture size
258 	 *
259 	 * total size = (number of 128KB blocks) + (number of remaining 4KB
260 	 * blocks)
261 	 *
262 	 */
263 	val = (uint32_t)((residual_4kb_blocks << MC_GSC_SIZE_RANGE_4KB_SHIFT) |
264 			 total_128kb_blocks);
265 	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, (uint32_t)val);
266 
267 	/*
268 	 * Lock the configuration settings by enabling TZ-only lock and
269 	 * locking the configuration against any future changes from NS
270 	 * world.
271 	 */
272 	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_CFG,
273 			  (uint32_t)MC_GSC_ENABLE_TZ_LOCK_BIT);
274 
275 	/*
276 	 * MCE propagates the GSC configuration values across the
277 	 * CCPLEX.
278 	 */
279 }
280 
281 static void tegra_unlock_videomem_nonoverlap(void)
282 {
283 	/* Clear the base */
284 	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, 0);
285 	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI, 0);
286 
287 	/* Clear the size */
288 	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, 0);
289 }
290 
291 static void tegra_clear_videomem(uintptr_t non_overlap_area_start,
292 				 unsigned long long non_overlap_area_size)
293 {
294 	int ret;
295 
296 	INFO("Cleaning previous Video Memory Carveout\n");
297 
298 	/*
299 	 * Map the NS memory first, clean it and then unmap it.
300 	 */
301 	ret = mmap_add_dynamic_region(non_overlap_area_start, /* PA */
302 				non_overlap_area_start, /* VA */
303 				non_overlap_area_size, /* size */
304 				MT_DEVICE | MT_RW | MT_NS); /* attrs */
305 	assert(ret == 0);
306 
307 	zeromem((void *)non_overlap_area_start, non_overlap_area_size);
308 	flush_dcache_range(non_overlap_area_start, non_overlap_area_size);
309 
310 	ret = mmap_remove_dynamic_region(non_overlap_area_start,
311 		non_overlap_area_size);
312 	assert(ret == 0);
313 }
314 
315 static void tegra_clear_videomem_nonoverlap(uintptr_t phys_base,
316 		unsigned long size_in_bytes)
317 {
318 	uintptr_t vmem_end_old = video_mem_base + (video_mem_size_mb << 20);
319 	uintptr_t vmem_end_new = phys_base + size_in_bytes;
320 	unsigned long long non_overlap_area_size;
321 
322 	/*
323 	 * Clear the old regions now being exposed. The following cases
324 	 * can occur -
325 	 *
326 	 * 1. clear whole old region (no overlap with new region)
327 	 * 2. clear old sub-region below new base
328 	 * 3. clear old sub-region above new end
329 	 */
330 	if ((phys_base > vmem_end_old) || (video_mem_base > vmem_end_new)) {
331 		tegra_clear_videomem(video_mem_base,
332 				     video_mem_size_mb << 20U);
333 	} else {
334 		if (video_mem_base < phys_base) {
335 			non_overlap_area_size = phys_base - video_mem_base;
336 			tegra_clear_videomem(video_mem_base, non_overlap_area_size);
337 		}
338 		if (vmem_end_old > vmem_end_new) {
339 			non_overlap_area_size = vmem_end_old - vmem_end_new;
340 			tegra_clear_videomem(vmem_end_new, non_overlap_area_size);
341 		}
342 	}
343 }
344 
345 /*
346  * Program the Video Memory carveout region
347  *
348  * phys_base = physical base of aperture
349  * size_in_bytes = size of aperture in bytes
350  */
351 void tegra_memctrl_videomem_setup(uint64_t phys_base, uint32_t size_in_bytes)
352 {
353 	/*
354 	 * Setup the Memory controller to restrict CPU accesses to the Video
355 	 * Memory region
356 	 */
357 
358 	INFO("Configuring Video Memory Carveout\n");
359 
360 	if (video_mem_base != 0U) {
361 		/*
362 		 * Lock the non overlapping memory being cleared so that
363 		 * other masters do not accidently write to it. The memory
364 		 * would be unlocked once the non overlapping region is
365 		 * cleared and the new memory settings take effect.
366 		 */
367 		tegra_lock_videomem_nonoverlap(video_mem_base,
368 			video_mem_size_mb << 20);
369 	}
370 
371 	/* program the Videomem aperture */
372 	tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO, (uint32_t)phys_base);
373 	tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
374 			  (uint32_t)(phys_base >> 32));
375 	tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB, size_in_bytes >> 20);
376 
377 	/* Redundancy check for Video Protect setting */
378 	assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_LO)
379 		 == (uint32_t)phys_base);
380 	assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_HI)
381 		 == (uint32_t)(phys_base >> 32));
382 	assert(tegra_mc_read_32(MC_VIDEO_PROTECT_SIZE_MB)
383 		 == (size_in_bytes >> 20));
384 
385 	/*
386 	 * MCE propagates the VideoMem configuration values across the
387 	 * CCPLEX.
388 	 */
389 	(void)mce_update_gsc_videomem();
390 
391 	/* Clear the non-overlapping memory */
392 	if (video_mem_base != 0U) {
393 		tegra_clear_videomem_nonoverlap(phys_base, size_in_bytes);
394 		tegra_unlock_videomem_nonoverlap();
395 	}
396 
397 	/* store new values */
398 	video_mem_base = phys_base;
399 	video_mem_size_mb = (uint64_t)size_in_bytes >> 20;
400 }
401 
402 /*
403  * This feature exists only for v1 of the Tegra Memory Controller.
404  */
405 void tegra_memctrl_disable_ahb_redirection(void)
406 {
407 	; /* do nothing */
408 }
409 
410 void tegra_memctrl_clear_pending_interrupts(void)
411 {
412 	; /* do nothing */
413 }
414