xref: /rk3399_ARM-atf/plat/nvidia/tegra/common/tegra_bl31_setup.c (revision 66e0b947c4c4fb851b70b38c757b14f6093faeee)
1 /*
2  * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <errno.h>
10 #include <stddef.h>
11 #include <string.h>
12 
13 #include <platform_def.h>
14 
15 #include <arch.h>
16 #include <arch_helpers.h>
17 #include <bl31/bl31.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <cortex_a53.h>
21 #include <cortex_a57.h>
22 #include <denver.h>
23 #include <drivers/console.h>
24 #include <lib/mmio.h>
25 #include <lib/utils.h>
26 #include <lib/utils_def.h>
27 #include <plat/common/platform.h>
28 
29 #include <memctrl.h>
30 #include <profiler.h>
31 #include <tegra_def.h>
32 #include <tegra_platform.h>
33 #include <tegra_private.h>
34 
35 /* length of Trusty's input parameters (in bytes) */
36 #define TRUSTY_PARAMS_LEN_BYTES	(4096*2)
37 
38 /*******************************************************************************
39  * Declarations of linker defined symbols which will help us find the layout
40  * of trusted SRAM
41  ******************************************************************************/
42 IMPORT_SYM(uint64_t, __RW_START__,	BL31_RW_START);
43 
44 extern uint64_t tegra_bl31_phys_base;
45 
46 static entry_point_info_t bl33_image_ep_info, bl32_image_ep_info;
47 static plat_params_from_bl2_t plat_bl31_params_from_bl2 = {
48 	.tzdram_size = TZDRAM_SIZE
49 };
50 #ifdef SPD_trusty
51 static aapcs64_params_t bl32_args;
52 #endif
53 
54 /*******************************************************************************
55  * This variable holds the non-secure image entry address
56  ******************************************************************************/
57 extern uint64_t ns_image_entrypoint;
58 
59 /*******************************************************************************
60  * Return a pointer to the 'entry_point_info' structure of the next image for
61  * security state specified. BL33 corresponds to the non-secure image type
62  * while BL32 corresponds to the secure image type.
63  ******************************************************************************/
64 entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
65 {
66 	entry_point_info_t *ep =  NULL;
67 
68 	/* return BL32 entry point info if it is valid */
69 	if (type == NON_SECURE) {
70 		ep = &bl33_image_ep_info;
71 	} else if ((type == SECURE) && (bl32_image_ep_info.pc != 0U)) {
72 		ep = &bl32_image_ep_info;
73 	}
74 
75 	return ep;
76 }
77 
78 /*******************************************************************************
79  * Return a pointer to the 'plat_params_from_bl2_t' structure. The BL2 image
80  * passes this platform specific information.
81  ******************************************************************************/
82 plat_params_from_bl2_t *bl31_get_plat_params(void)
83 {
84 	return &plat_bl31_params_from_bl2;
85 }
86 
87 /*******************************************************************************
88  * Perform any BL31 specific platform actions. Populate the BL33 and BL32 image
89  * info.
90  ******************************************************************************/
91 void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
92 				u_register_t arg2, u_register_t arg3)
93 {
94 	struct tegra_bl31_params *arg_from_bl2 = (struct tegra_bl31_params *) arg0;
95 	plat_params_from_bl2_t *plat_params = (plat_params_from_bl2_t *)arg1;
96 	int32_t ret;
97 
98 	/*
99 	 * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
100 	 * there's no argument to relay from a previous bootloader. Platforms
101 	 * might use custom ways to get arguments.
102 	 */
103 	if (arg_from_bl2 == NULL) {
104 		arg_from_bl2 = plat_get_bl31_params();
105 	}
106 	if (plat_params == NULL) {
107 		plat_params = plat_get_bl31_plat_params();
108 	}
109 
110 	/*
111 	 * Copy BL3-3, BL3-2 entry point information.
112 	 * They are stored in Secure RAM, in BL2's address space.
113 	 */
114 	assert(arg_from_bl2 != NULL);
115 	assert(arg_from_bl2->bl33_ep_info != NULL);
116 	bl33_image_ep_info = *arg_from_bl2->bl33_ep_info;
117 
118 	if (arg_from_bl2->bl32_ep_info != NULL) {
119 		bl32_image_ep_info = *arg_from_bl2->bl32_ep_info;
120 #ifdef SPD_trusty
121 		/* save BL32 boot parameters */
122 		memcpy(&bl32_args, &arg_from_bl2->bl32_ep_info->args, sizeof(bl32_args));
123 #endif
124 	}
125 
126 	/*
127 	 * Parse platform specific parameters
128 	 */
129 	assert(plat_params != NULL);
130 	plat_bl31_params_from_bl2.tzdram_base = plat_params->tzdram_base;
131 	plat_bl31_params_from_bl2.tzdram_size = plat_params->tzdram_size;
132 	plat_bl31_params_from_bl2.uart_id = plat_params->uart_id;
133 	plat_bl31_params_from_bl2.l2_ecc_parity_prot_dis = plat_params->l2_ecc_parity_prot_dis;
134 	plat_bl31_params_from_bl2.sc7entry_fw_size = plat_params->sc7entry_fw_size;
135 	plat_bl31_params_from_bl2.sc7entry_fw_base = plat_params->sc7entry_fw_base;
136 
137 	/*
138 	 * It is very important that we run either from TZDRAM or TZSRAM base.
139 	 * Add an explicit check here.
140 	 */
141 	if ((plat_bl31_params_from_bl2.tzdram_base != (uint64_t)BL31_BASE) &&
142 	    (TEGRA_TZRAM_BASE != BL31_BASE)) {
143 		panic();
144 	}
145 
146 	/*
147 	 * Enable console for the platform
148 	 */
149 	plat_enable_console(plat_params->uart_id);
150 
151 	/*
152 	 * The previous bootloader passes the base address of the shared memory
153 	 * location to store the boot profiler logs. Sanity check the
154 	 * address and initialise the profiler library, if it looks ok.
155 	 */
156 	ret = bl31_check_ns_address(plat_params->boot_profiler_shmem_base,
157 			PROFILER_SIZE_BYTES);
158 	if (ret == (int32_t)0) {
159 
160 		/* store the membase for the profiler lib */
161 		plat_bl31_params_from_bl2.boot_profiler_shmem_base =
162 			plat_params->boot_profiler_shmem_base;
163 
164 		/* initialise the profiler library */
165 		boot_profiler_init(plat_params->boot_profiler_shmem_base,
166 				   TEGRA_TMRUS_BASE);
167 	}
168 
169 	/*
170 	 * Add timestamp for platform early setup entry.
171 	 */
172 	boot_profiler_add_record("[TF] early setup entry");
173 
174 	/*
175 	 * Initialize delay timer
176 	 */
177 	tegra_delay_timer_init();
178 
179 	/* Early platform setup for Tegra SoCs */
180 	plat_early_platform_setup();
181 
182 	/*
183 	 * Do initial security configuration to allow DRAM/device access.
184 	 */
185 	tegra_memctrl_tzdram_setup(plat_bl31_params_from_bl2.tzdram_base,
186 			(uint32_t)plat_bl31_params_from_bl2.tzdram_size);
187 
188 #if RELOCATE_BL32_IMAGE
189 	/*
190 	 * The previous bootloader might not have placed the BL32 image
191 	 * inside the TZDRAM. Platform handler to allow relocation of BL32
192 	 * image to TZDRAM memory. This behavior might change per platform.
193 	 */
194 	plat_relocate_bl32_image(arg_from_bl2->bl32_image_info);
195 #endif
196 
197 	/*
198 	 * Add timestamp for platform early setup exit.
199 	 */
200 	boot_profiler_add_record("[TF] early setup exit");
201 
202 	INFO("BL3-1: Boot CPU: %s Processor [%lx]\n",
203 	     (((read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK)
204 	      == DENVER_IMPL) ? "Denver" : "ARM", read_mpidr());
205 }
206 
207 #ifdef SPD_trusty
208 void plat_trusty_set_boot_args(aapcs64_params_t *args)
209 {
210 	/*
211 	* arg0 = TZDRAM aperture available for BL32
212 	* arg1 = BL32 boot params
213 	* arg2 = EKS Blob Length
214 	* arg3 = Boot Profiler Carveout Base
215 	*/
216 	args->arg0 = bl32_args.arg0;
217 	args->arg1 = bl32_args.arg2;
218 
219 	/* update EKS size */
220 	args->arg2 = bl32_args.arg4;
221 
222 	/* Profiler Carveout Base */
223 	args->arg3 = bl32_args.arg5;
224 }
225 #endif
226 
227 /*******************************************************************************
228  * Initialize the gic, configure the SCR.
229  ******************************************************************************/
230 void bl31_platform_setup(void)
231 {
232 	/*
233 	 * Add timestamp for platform setup entry.
234 	 */
235 	boot_profiler_add_record("[TF] plat setup entry");
236 
237 	/* Initialize the gic cpu and distributor interfaces */
238 	plat_gic_setup();
239 
240 	/*
241 	 * Setup secondary CPU POR infrastructure.
242 	 */
243 	plat_secondary_setup();
244 
245 	/*
246 	 * Initial Memory Controller configuration.
247 	 */
248 	tegra_memctrl_setup();
249 
250 	/*
251 	 * Late setup handler to allow platforms to performs additional
252 	 * functionality.
253 	 * This handler gets called with MMU enabled.
254 	 */
255 	plat_late_platform_setup();
256 
257 	/*
258 	 * Add timestamp for platform setup exit.
259 	 */
260 	boot_profiler_add_record("[TF] plat setup exit");
261 
262 	INFO("BL3-1: Tegra platform setup complete\n");
263 }
264 
265 /*******************************************************************************
266  * Perform any BL3-1 platform runtime setup prior to BL3-1 cold boot exit
267  ******************************************************************************/
268 void bl31_plat_runtime_setup(void)
269 {
270 	/*
271 	 * During cold boot, it is observed that the arbitration
272 	 * bit is set in the Memory controller leading to false
273 	 * error interrupts in the non-secure world. To avoid
274 	 * this, clean the interrupt status register before
275 	 * booting into the non-secure world
276 	 */
277 	tegra_memctrl_clear_pending_interrupts();
278 
279 	/*
280 	 * During boot, USB3 and flash media (SDMMC/SATA) devices need
281 	 * access to IRAM. Because these clients connect to the MC and
282 	 * do not have a direct path to the IRAM, the MC implements AHB
283 	 * redirection during boot to allow path to IRAM. In this mode
284 	 * accesses to a programmed memory address aperture are directed
285 	 * to the AHB bus, allowing access to the IRAM. This mode must be
286 	 * disabled before we jump to the non-secure world.
287 	 */
288 	tegra_memctrl_disable_ahb_redirection();
289 
290 	/*
291 	 * Add final timestamp before exiting BL31.
292 	 */
293 	boot_profiler_add_record("[TF] bl31 exit");
294 	boot_profiler_deinit();
295 }
296 
297 /*******************************************************************************
298  * Perform the very early platform specific architectural setup here. At the
299  * moment this only intializes the mmu in a quick and dirty way.
300  ******************************************************************************/
301 void bl31_plat_arch_setup(void)
302 {
303 	uint64_t rw_start = BL31_RW_START;
304 	uint64_t rw_size = BL_END - BL31_RW_START;
305 	uint64_t rodata_start = BL_RO_DATA_BASE;
306 	uint64_t rodata_size = BL_RO_DATA_END - BL_RO_DATA_BASE;
307 	uint64_t code_base = BL_CODE_BASE;
308 	uint64_t code_size = BL_CODE_END - BL_CODE_BASE;
309 	const mmap_region_t *plat_mmio_map = NULL;
310 	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
311 
312 	/*
313 	 * Add timestamp for arch setup entry.
314 	 */
315 	boot_profiler_add_record("[TF] arch setup entry");
316 
317 	/* add MMIO space */
318 	plat_mmio_map = plat_get_mmio_map();
319 	if (plat_mmio_map != NULL) {
320 		mmap_add(plat_mmio_map);
321 	} else {
322 		WARN("MMIO map not available\n");
323 	}
324 
325 	/* add memory regions */
326 	mmap_add_region(rw_start, rw_start,
327 			rw_size,
328 			MT_MEMORY | MT_RW | MT_SECURE);
329 	mmap_add_region(rodata_start, rodata_start,
330 			rodata_size,
331 			MT_RO_DATA | MT_SECURE);
332 	mmap_add_region(code_base, code_base,
333 			code_size,
334 			MT_CODE | MT_SECURE);
335 
336 	/* map TZDRAM used by BL31 as coherent memory */
337 	if (TEGRA_TZRAM_BASE == tegra_bl31_phys_base) {
338 		mmap_add_region(params_from_bl2->tzdram_base,
339 				params_from_bl2->tzdram_base,
340 				BL31_SIZE,
341 				MT_DEVICE | MT_RW | MT_SECURE);
342 	}
343 
344 	/* set up translation tables */
345 	init_xlat_tables();
346 
347 	/* enable the MMU */
348 	enable_mmu_el3(0);
349 
350 	/*
351 	 * Add timestamp for arch setup exit.
352 	 */
353 	boot_profiler_add_record("[TF] arch setup exit");
354 
355 	INFO("BL3-1: Tegra: MMU enabled\n");
356 }
357 
358 /*******************************************************************************
359  * Check if the given NS DRAM range is valid
360  ******************************************************************************/
361 int32_t bl31_check_ns_address(uint64_t base, uint64_t size_in_bytes)
362 {
363 	uint64_t end = base + size_in_bytes - U(1);
364 
365 	/*
366 	 * Sanity check the input values
367 	 */
368 	if ((base == 0U) || (size_in_bytes == 0U)) {
369 		ERROR("NS address 0x%llx (%lld bytes) is invalid\n",
370 			base, size_in_bytes);
371 		return -EINVAL;
372 	}
373 
374 	/*
375 	 * Check if the NS DRAM address is valid
376 	 */
377 	if ((base < TEGRA_DRAM_BASE) || (base >= TEGRA_DRAM_END) ||
378 	    (end > TEGRA_DRAM_END)) {
379 
380 		ERROR("NS address 0x%llx is out-of-bounds!\n", base);
381 		return -EFAULT;
382 	}
383 
384 	/*
385 	 * TZDRAM aperture contains the BL31 and BL32 images, so we need
386 	 * to check if the NS DRAM range overlaps the TZDRAM aperture.
387 	 */
388 	if ((base < (uint64_t)TZDRAM_END) && (end > tegra_bl31_phys_base)) {
389 		ERROR("NS address 0x%llx overlaps TZDRAM!\n", base);
390 		return -ENOTSUP;
391 	}
392 
393 	/* valid NS address */
394 	return 0;
395 }
396