xref: /rk3399_ARM-atf/plat/mediatek/mt8173/plat_pm.c (revision 61f72a34250d063da67f4fc2b0eb8c3fda3376be)
1 /*
2  * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <assert.h>
9 #include <bakery_lock.h>
10 #include <cci.h>
11 #include <console.h>
12 #include <debug.h>
13 #include <errno.h>
14 #include <gicv2.h>
15 #include <mcucfg.h>
16 #include <mmio.h>
17 #include <mt8173_def.h>
18 #include <mt_cpuxgpt.h> /* generic_timer_backup() */
19 #include <plat_arm.h>
20 #include <plat_private.h>
21 #include <power_tracer.h>
22 #include <psci.h>
23 #include <rtc.h>
24 #include <scu.h>
25 #include <spm_hotplug.h>
26 #include <spm_mcdi.h>
27 #include <spm_suspend.h>
28 
29 #if !ENABLE_PLAT_COMPAT
30 #define MTK_PWR_LVL0	0
31 #define MTK_PWR_LVL1	1
32 #define MTK_PWR_LVL2	2
33 
34 /* Macros to read the MTK power domain state */
35 #define MTK_CORE_PWR_STATE(state)	(state)->pwr_domain_state[MTK_PWR_LVL0]
36 #define MTK_CLUSTER_PWR_STATE(state)	(state)->pwr_domain_state[MTK_PWR_LVL1]
37 #define MTK_SYSTEM_PWR_STATE(state)	((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) ?\
38 			(state)->pwr_domain_state[MTK_PWR_LVL2] : 0)
39 #endif
40 
41 #if PSCI_EXTENDED_STATE_ID
42 /*
43  *  The table storing the valid idle power states. Ensure that the
44  *  array entries are populated in ascending order of state-id to
45  *  enable us to use binary search during power state validation.
46  *  The table must be terminated by a NULL entry.
47  */
48 const unsigned int mtk_pm_idle_states[] = {
49 	/* State-id - 0x001 */
50 	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN,
51 		MTK_LOCAL_STATE_RET, MTK_PWR_LVL0, PSTATE_TYPE_STANDBY),
52 	/* State-id - 0x002 */
53 	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN,
54 		MTK_LOCAL_STATE_OFF, MTK_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
55 	/* State-id - 0x022 */
56 	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_OFF,
57 		MTK_LOCAL_STATE_OFF, MTK_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
58 #if PLAT_MAX_PWR_LVL > MTK_PWR_LVL1
59 	/* State-id - 0x222 */
60 	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_OFF, MTK_LOCAL_STATE_OFF,
61 		MTK_LOCAL_STATE_OFF, MTK_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
62 #endif
63 	0,
64 };
65 #endif
66 
67 struct core_context {
68 	unsigned long timer_data[8];
69 	unsigned int count;
70 	unsigned int rst;
71 	unsigned int abt;
72 	unsigned int brk;
73 };
74 
75 struct cluster_context {
76 	struct core_context core[PLATFORM_MAX_CPUS_PER_CLUSTER];
77 };
78 
79 /*
80  * Top level structure to hold the complete context of a multi cluster system
81  */
82 struct system_context {
83 	struct cluster_context cluster[PLATFORM_CLUSTER_COUNT];
84 };
85 
86 /*
87  * Top level structure which encapsulates the context of the entire system
88  */
89 static struct system_context dormant_data[1];
90 
91 static inline struct cluster_context *system_cluster(
92 						struct system_context *system,
93 						uint32_t clusterid)
94 {
95 	return &system->cluster[clusterid];
96 }
97 
98 static inline struct core_context *cluster_core(struct cluster_context *cluster,
99 						uint32_t cpuid)
100 {
101 	return &cluster->core[cpuid];
102 }
103 
104 static struct cluster_context *get_cluster_data(unsigned long mpidr)
105 {
106 	uint32_t clusterid;
107 
108 	clusterid = (mpidr & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS;
109 
110 	return system_cluster(dormant_data, clusterid);
111 }
112 
113 static struct core_context *get_core_data(unsigned long mpidr)
114 {
115 	struct cluster_context *cluster;
116 	uint32_t cpuid;
117 
118 	cluster = get_cluster_data(mpidr);
119 	cpuid = mpidr & MPIDR_CPU_MASK;
120 
121 	return cluster_core(cluster, cpuid);
122 }
123 
124 static void mt_save_generic_timer(unsigned long *container)
125 {
126 	uint64_t ctl;
127 	uint64_t val;
128 
129 	__asm__ volatile("mrs	%x0, cntkctl_el1\n\t"
130 			 "mrs	%x1, cntp_cval_el0\n\t"
131 			 "stp	%x0, %x1, [%2, #0]"
132 			 : "=&r" (ctl), "=&r" (val)
133 			 : "r" (container)
134 			 : "memory");
135 
136 	__asm__ volatile("mrs	%x0, cntp_tval_el0\n\t"
137 			 "mrs	%x1, cntp_ctl_el0\n\t"
138 			 "stp	%x0, %x1, [%2, #16]"
139 			 : "=&r" (val), "=&r" (ctl)
140 			 : "r" (container)
141 			 : "memory");
142 
143 	__asm__ volatile("mrs	%x0, cntv_tval_el0\n\t"
144 			 "mrs	%x1, cntv_ctl_el0\n\t"
145 			 "stp	%x0, %x1, [%2, #32]"
146 			 : "=&r" (val), "=&r" (ctl)
147 			 : "r" (container)
148 			 : "memory");
149 }
150 
151 static void mt_restore_generic_timer(unsigned long *container)
152 {
153 	uint64_t ctl;
154 	uint64_t val;
155 
156 	__asm__ volatile("ldp	%x0, %x1, [%2, #0]\n\t"
157 			 "msr	cntkctl_el1, %x0\n\t"
158 			 "msr	cntp_cval_el0, %x1"
159 			 : "=&r" (ctl), "=&r" (val)
160 			 : "r" (container)
161 			 : "memory");
162 
163 	__asm__ volatile("ldp	%x0, %x1, [%2, #16]\n\t"
164 			 "msr	cntp_tval_el0, %x0\n\t"
165 			 "msr	cntp_ctl_el0, %x1"
166 			 : "=&r" (val), "=&r" (ctl)
167 			 : "r" (container)
168 			 : "memory");
169 
170 	__asm__ volatile("ldp	%x0, %x1, [%2, #32]\n\t"
171 			 "msr	cntv_tval_el0, %x0\n\t"
172 			 "msr	cntv_ctl_el0, %x1"
173 			 : "=&r" (val), "=&r" (ctl)
174 			 : "r" (container)
175 			 : "memory");
176 }
177 
178 static inline uint64_t read_cntpctl(void)
179 {
180 	uint64_t cntpctl;
181 
182 	__asm__ volatile("mrs	%x0, cntp_ctl_el0"
183 			 : "=r" (cntpctl) : : "memory");
184 
185 	return cntpctl;
186 }
187 
188 static inline void write_cntpctl(uint64_t cntpctl)
189 {
190 	__asm__ volatile("msr	cntp_ctl_el0, %x0" : : "r"(cntpctl));
191 }
192 
193 static void stop_generic_timer(void)
194 {
195 	/*
196 	 * Disable the timer and mask the irq to prevent
197 	 * suprious interrupts on this cpu interface. It
198 	 * will bite us when we come back if we don't. It
199 	 * will be replayed on the inbound cluster.
200 	 */
201 	uint64_t cntpctl = read_cntpctl();
202 
203 	write_cntpctl(clr_cntp_ctl_enable(cntpctl));
204 }
205 
206 static void mt_cpu_save(unsigned long mpidr)
207 {
208 	struct core_context *core;
209 
210 	core = get_core_data(mpidr);
211 	mt_save_generic_timer(core->timer_data);
212 
213 	/* disable timer irq, and upper layer should enable it again. */
214 	stop_generic_timer();
215 }
216 
217 static void mt_cpu_restore(unsigned long mpidr)
218 {
219 	struct core_context *core;
220 
221 	core = get_core_data(mpidr);
222 	mt_restore_generic_timer(core->timer_data);
223 }
224 
225 static void mt_platform_save_context(unsigned long mpidr)
226 {
227 	/* mcusys_save_context: */
228 	mt_cpu_save(mpidr);
229 }
230 
231 static void mt_platform_restore_context(unsigned long mpidr)
232 {
233 	/* mcusys_restore_context: */
234 	mt_cpu_restore(mpidr);
235 }
236 
237 #if ENABLE_PLAT_COMPAT
238 /*******************************************************************************
239 * Private function which is used to determine if any platform actions
240 * should be performed for the specified affinity instance given its
241 * state. Nothing needs to be done if the 'state' is not off or if this is not
242 * the highest affinity level which will enter the 'state'.
243 *******************************************************************************/
244 static int32_t plat_do_plat_actions(unsigned int afflvl, unsigned int state)
245 {
246 	unsigned int max_phys_off_afflvl;
247 
248 	assert(afflvl <= MPIDR_AFFLVL2);
249 
250 	if (state != PSCI_STATE_OFF)
251 		return -EAGAIN;
252 
253 	/*
254 	 * Find the highest affinity level which will be suspended and postpone
255 	 * all the platform specific actions until that level is hit.
256 	 */
257 	max_phys_off_afflvl = psci_get_max_phys_off_afflvl();
258 	assert(max_phys_off_afflvl != PSCI_INVALID_DATA);
259 	if (afflvl != max_phys_off_afflvl)
260 		return -EAGAIN;
261 
262 	return 0;
263 }
264 
265 /*******************************************************************************
266  * MTK_platform handler called when an affinity instance is about to enter
267  * standby.
268  ******************************************************************************/
269 static void plat_affinst_standby(unsigned int power_state)
270 {
271 	unsigned int target_afflvl;
272 
273 	/* Sanity check the requested state */
274 	target_afflvl = psci_get_pstate_afflvl(power_state);
275 
276 	/*
277 	 * It's possible to enter standby only on affinity level 0 i.e. a cpu
278 	 * on the MTK_platform. Ignore any other affinity level.
279 	 */
280 	if (target_afflvl == MPIDR_AFFLVL0) {
281 		/*
282 		 * Enter standby state. dsb is good practice before using wfi
283 		 * to enter low power states.
284 		 */
285 		dsb();
286 		wfi();
287 	}
288 }
289 #else
290 static void plat_cpu_standby(plat_local_state_t cpu_state)
291 {
292 	unsigned int scr;
293 
294 	scr = read_scr_el3();
295 	write_scr_el3(scr | SCR_IRQ_BIT);
296 	isb();
297 	dsb();
298 	wfi();
299 	write_scr_el3(scr);
300 }
301 #endif
302 
303 /*******************************************************************************
304  * MTK_platform handler called when an affinity instance is about to be turned
305  * on. The level and mpidr determine the affinity instance.
306  ******************************************************************************/
307 #if ENABLE_PLAT_COMPAT
308 static int plat_affinst_on(unsigned long mpidr,
309 		    unsigned long sec_entrypoint,
310 		    unsigned int afflvl,
311 		    unsigned int state)
312 {
313 	int rc = PSCI_E_SUCCESS;
314 	unsigned long cpu_id;
315 	unsigned long cluster_id;
316 	uintptr_t rv;
317 
318 	/*
319 	 * It's possible to turn on only affinity level 0 i.e. a cpu
320 	 * on the MTK_platform. Ignore any other affinity level.
321 	 */
322 	if (afflvl != MPIDR_AFFLVL0)
323 		return rc;
324 
325 	cpu_id = mpidr & MPIDR_CPU_MASK;
326 	cluster_id = mpidr & MPIDR_CLUSTER_MASK;
327 
328 	if (cluster_id)
329 		rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
330 	else
331 		rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;
332 
333 	mmio_write_32(rv, sec_entrypoint);
334 	INFO("mt_on[%ld:%ld], entry %x\n",
335 		cluster_id, cpu_id, mmio_read_32(rv));
336 
337 	spm_hotplug_on(mpidr);
338 
339 	return rc;
340 }
341 #else
342 static uintptr_t secure_entrypoint;
343 
344 static int plat_power_domain_on(unsigned long mpidr)
345 {
346 	int rc = PSCI_E_SUCCESS;
347 	unsigned long cpu_id;
348 	unsigned long cluster_id;
349 	uintptr_t rv;
350 
351 	cpu_id = mpidr & MPIDR_CPU_MASK;
352 	cluster_id = mpidr & MPIDR_CLUSTER_MASK;
353 
354 	if (cluster_id)
355 		rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
356 	else
357 		rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;
358 
359 	mmio_write_32(rv, secure_entrypoint);
360 	INFO("mt_on[%ld:%ld], entry %x\n",
361 		cluster_id, cpu_id, mmio_read_32(rv));
362 
363 	spm_hotplug_on(mpidr);
364 	return rc;
365 }
366 #endif
367 
368 /*******************************************************************************
369  * MTK_platform handler called when an affinity instance is about to be turned
370  * off. The level and mpidr determine the affinity instance. The 'state' arg.
371  * allows the platform to decide whether the cluster is being turned off and
372  * take apt actions.
373  *
374  * CAUTION: This function is called with coherent stacks so that caches can be
375  * turned off, flushed and coherency disabled. There is no guarantee that caches
376  * will remain turned on across calls to this function as each affinity level is
377  * dealt with. So do not write & read global variables across calls. It will be
378  * wise to do flush a write to the global to prevent unpredictable results.
379  ******************************************************************************/
380 #if ENABLE_PLAT_COMPAT
381 static void plat_affinst_off(unsigned int afflvl, unsigned int state)
382 {
383 	unsigned long mpidr = read_mpidr_el1();
384 
385 	/* Determine if any platform actions need to be executed. */
386 	if (plat_do_plat_actions(afflvl, state) == -EAGAIN)
387 		return;
388 
389 	/* Prevent interrupts from spuriously waking up this cpu */
390 	gicv2_cpuif_disable();
391 
392 	spm_hotplug_off(mpidr);
393 
394 	trace_power_flow(mpidr, CPU_DOWN);
395 
396 	if (afflvl != MPIDR_AFFLVL0) {
397 		/* Disable coherency if this cluster is to be turned off */
398 		plat_cci_disable();
399 
400 		trace_power_flow(mpidr, CLUSTER_DOWN);
401 	}
402 }
403 #else
404 static void plat_power_domain_off(const psci_power_state_t *state)
405 {
406 	unsigned long mpidr = read_mpidr_el1();
407 
408 	/* Prevent interrupts from spuriously waking up this cpu */
409 	gicv2_cpuif_disable();
410 
411 	spm_hotplug_off(mpidr);
412 
413 	trace_power_flow(mpidr, CPU_DOWN);
414 
415 	if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
416 		/* Disable coherency if this cluster is to be turned off */
417 		plat_cci_disable();
418 
419 		trace_power_flow(mpidr, CLUSTER_DOWN);
420 	}
421 }
422 #endif
423 
424 /*******************************************************************************
425  * MTK_platform handler called when an affinity instance is about to be
426  * suspended. The level and mpidr determine the affinity instance. The 'state'
427  * arg. allows the platform to decide whether the cluster is being turned off
428  * and take apt actions.
429  *
430  * CAUTION: This function is called with coherent stacks so that caches can be
431  * turned off, flushed and coherency disabled. There is no guarantee that caches
432  * will remain turned on across calls to this function as each affinity level is
433  * dealt with. So do not write & read global variables across calls. It will be
434  * wise to do flush a write to the global to prevent unpredictable results.
435  ******************************************************************************/
436 #if ENABLE_PLAT_COMPAT
437 static void plat_affinst_suspend(unsigned long sec_entrypoint,
438 			  unsigned int afflvl,
439 			  unsigned int state)
440 {
441 	unsigned long mpidr = read_mpidr_el1();
442 	unsigned long cluster_id;
443 	unsigned long cpu_id;
444 	uintptr_t rv;
445 
446 	/* Determine if any platform actions need to be executed. */
447 	if (plat_do_plat_actions(afflvl, state) == -EAGAIN)
448 		return;
449 
450 	cpu_id = mpidr & MPIDR_CPU_MASK;
451 	cluster_id = mpidr & MPIDR_CLUSTER_MASK;
452 
453 	if (cluster_id)
454 		rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
455 	else
456 		rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;
457 
458 	mmio_write_32(rv, sec_entrypoint);
459 
460 	if (afflvl < MPIDR_AFFLVL2)
461 		spm_mcdi_prepare_for_off_state(mpidr, afflvl);
462 
463 	if (afflvl >= MPIDR_AFFLVL0)
464 		mt_platform_save_context(mpidr);
465 
466 	/* Perform the common cluster specific operations */
467 	if (afflvl >= MPIDR_AFFLVL1) {
468 		/* Disable coherency if this cluster is to be turned off */
469 		plat_cci_disable();
470 	}
471 
472 	if (afflvl >= MPIDR_AFFLVL2) {
473 		disable_scu(mpidr);
474 		generic_timer_backup();
475 		spm_system_suspend();
476 		/* Prevent interrupts from spuriously waking up this cpu */
477 		gicv2_cpuif_disable();
478 	}
479 }
480 #else
481 static void plat_power_domain_suspend(const psci_power_state_t *state)
482 {
483 	unsigned long mpidr = read_mpidr_el1();
484 	unsigned long cluster_id;
485 	unsigned long cpu_id;
486 	uintptr_t rv;
487 
488 	cpu_id = mpidr & MPIDR_CPU_MASK;
489 	cluster_id = mpidr & MPIDR_CLUSTER_MASK;
490 
491 	if (cluster_id)
492 		rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
493 	else
494 		rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;
495 
496 	mmio_write_32(rv, secure_entrypoint);
497 
498 	if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) {
499 		spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL0);
500 		if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF)
501 			spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL1);
502 	}
503 
504 	mt_platform_save_context(mpidr);
505 
506 	/* Perform the common cluster specific operations */
507 	if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
508 		/* Disable coherency if this cluster is to be turned off */
509 		plat_cci_disable();
510 	}
511 
512 	if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
513 		disable_scu(mpidr);
514 		generic_timer_backup();
515 		spm_system_suspend();
516 		/* Prevent interrupts from spuriously waking up this cpu */
517 		gicv2_cpuif_disable();
518 	}
519 }
520 #endif
521 
522 /*******************************************************************************
523  * MTK_platform handler called when an affinity instance has just been powered
524  * on after being turned off earlier. The level and mpidr determine the affinity
525  * instance. The 'state' arg. allows the platform to decide whether the cluster
526  * was turned off prior to wakeup and do what's necessary to setup it up
527  * correctly.
528  ******************************************************************************/
529 #if ENABLE_PLAT_COMPAT
530 static void plat_affinst_on_finish(unsigned int afflvl, unsigned int state)
531 {
532 	unsigned long mpidr = read_mpidr_el1();
533 
534 	/* Determine if any platform actions need to be executed. */
535 	if (plat_do_plat_actions(afflvl, state) == -EAGAIN)
536 		return;
537 
538 	/* Perform the common cluster specific operations */
539 	if (afflvl >= MPIDR_AFFLVL1) {
540 		/* Enable coherency if this cluster was off */
541 		plat_cci_enable();
542 		trace_power_flow(mpidr, CLUSTER_UP);
543 	}
544 
545 	/* Enable the gic cpu interface */
546 	gicv2_cpuif_enable();
547 	gicv2_pcpu_distif_init();
548 	trace_power_flow(mpidr, CPU_UP);
549 }
550 #else
551 void mtk_system_pwr_domain_resume(void);
552 
553 static void plat_power_domain_on_finish(const psci_power_state_t *state)
554 {
555 	unsigned long mpidr = read_mpidr_el1();
556 
557 	assert(state->pwr_domain_state[MPIDR_AFFLVL0] == MTK_LOCAL_STATE_OFF);
558 
559 	if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) &&
560 		(state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF))
561 		mtk_system_pwr_domain_resume();
562 
563 	if (state->pwr_domain_state[MPIDR_AFFLVL1] == MTK_LOCAL_STATE_OFF) {
564 		plat_cci_enable();
565 		trace_power_flow(mpidr, CLUSTER_UP);
566 	}
567 
568 	if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) &&
569 		(state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF))
570 		return;
571 
572 	/* Enable the gic cpu interface */
573 	gicv2_cpuif_enable();
574 	gicv2_pcpu_distif_init();
575 	trace_power_flow(mpidr, CPU_UP);
576 }
577 #endif
578 
579 /*******************************************************************************
580  * MTK_platform handler called when an affinity instance has just been powered
581  * on after having been suspended earlier. The level and mpidr determine the
582  * affinity instance.
583  ******************************************************************************/
584 #if ENABLE_PLAT_COMPAT
585 static void plat_affinst_suspend_finish(unsigned int afflvl, unsigned int state)
586 {
587 	unsigned long mpidr = read_mpidr_el1();
588 
589 	/* Determine if any platform actions need to be executed. */
590 	if (plat_do_plat_actions(afflvl, state) == -EAGAIN)
591 		return;
592 
593 	if (afflvl >= MPIDR_AFFLVL2) {
594 		/* Enable the gic cpu interface */
595 		plat_arm_gic_init();
596 		spm_system_suspend_finish();
597 		enable_scu(mpidr);
598 	}
599 
600 	/* Perform the common cluster specific operations */
601 	if (afflvl >= MPIDR_AFFLVL1) {
602 		/* Enable coherency if this cluster was off */
603 		plat_cci_enable();
604 	}
605 
606 	if (afflvl >= MPIDR_AFFLVL0)
607 		mt_platform_restore_context(mpidr);
608 
609 	if (afflvl < MPIDR_AFFLVL2)
610 		spm_mcdi_finish_for_on_state(mpidr, afflvl);
611 
612 	gicv2_pcpu_distif_init();
613 }
614 #else
615 static void plat_power_domain_suspend_finish(const psci_power_state_t *state)
616 {
617 	unsigned long mpidr = read_mpidr_el1();
618 
619 	if (state->pwr_domain_state[MTK_PWR_LVL0] == MTK_LOCAL_STATE_RET)
620 		return;
621 
622 	if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
623 		/* Enable the gic cpu interface */
624 		plat_arm_gic_init();
625 		spm_system_suspend_finish();
626 		enable_scu(mpidr);
627 	}
628 
629 	/* Perform the common cluster specific operations */
630 	if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
631 		/* Enable coherency if this cluster was off */
632 		plat_cci_enable();
633 	}
634 
635 	mt_platform_restore_context(mpidr);
636 
637 	if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) {
638 		spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL0);
639 		if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF)
640 			spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL1);
641 	}
642 
643 	gicv2_pcpu_distif_init();
644 }
645 #endif
646 
647 #if ENABLE_PLAT_COMPAT
648 static unsigned int plat_get_sys_suspend_power_state(void)
649 {
650 	/* StateID: 0, StateType: 1(power down), PowerLevel: 2(system) */
651 	return psci_make_powerstate(0, 1, 2);
652 }
653 #else
654 static void plat_get_sys_suspend_power_state(psci_power_state_t *req_state)
655 {
656 	assert(PLAT_MAX_PWR_LVL >= 2);
657 
658 	for (int i = MPIDR_AFFLVL0; i <= PLAT_MAX_PWR_LVL; i++)
659 		req_state->pwr_domain_state[i] = MTK_LOCAL_STATE_OFF;
660 }
661 #endif
662 
663 /*******************************************************************************
664  * MTK handlers to shutdown/reboot the system
665  ******************************************************************************/
666 static void __dead2 plat_system_off(void)
667 {
668 	INFO("MTK System Off\n");
669 
670 	rtc_bbpu_power_down();
671 
672 	wfi();
673 	ERROR("MTK System Off: operation not handled.\n");
674 	panic();
675 }
676 
677 static void __dead2 plat_system_reset(void)
678 {
679 	/* Write the System Configuration Control Register */
680 	INFO("MTK System Reset\n");
681 
682 	mmio_clrsetbits_32(MTK_WDT_BASE,
683 		(MTK_WDT_MODE_DUAL_MODE | MTK_WDT_MODE_IRQ),
684 		MTK_WDT_MODE_KEY);
685 	mmio_setbits_32(MTK_WDT_BASE, (MTK_WDT_MODE_KEY | MTK_WDT_MODE_EXTEN));
686 	mmio_setbits_32(MTK_WDT_SWRST, MTK_WDT_SWRST_KEY);
687 
688 	wfi();
689 	ERROR("MTK System Reset: operation not handled.\n");
690 	panic();
691 }
692 
693 #if !ENABLE_PLAT_COMPAT
694 #if !PSCI_EXTENDED_STATE_ID
695 static int plat_validate_power_state(unsigned int power_state,
696 					psci_power_state_t *req_state)
697 {
698 	int pstate = psci_get_pstate_type(power_state);
699 	int pwr_lvl = psci_get_pstate_pwrlvl(power_state);
700 	int i;
701 
702 	assert(req_state);
703 
704 	if (pwr_lvl > PLAT_MAX_PWR_LVL)
705 		return PSCI_E_INVALID_PARAMS;
706 
707 	/* Sanity check the requested state */
708 	if (pstate == PSTATE_TYPE_STANDBY) {
709 		/*
710 		 * It's possible to enter standby only on power level 0
711 		 * Ignore any other power level.
712 		 */
713 		if (pwr_lvl != 0)
714 			return PSCI_E_INVALID_PARAMS;
715 
716 		req_state->pwr_domain_state[MTK_PWR_LVL0] =
717 					MTK_LOCAL_STATE_RET;
718 	} else {
719 		for (i = 0; i <= pwr_lvl; i++)
720 			req_state->pwr_domain_state[i] =
721 					MTK_LOCAL_STATE_OFF;
722 	}
723 
724 	/*
725 	 * We expect the 'state id' to be zero.
726 	 */
727 	if (psci_get_pstate_id(power_state))
728 		return PSCI_E_INVALID_PARAMS;
729 
730 	return PSCI_E_SUCCESS;
731 }
732 #else
733 int plat_validate_power_state(unsigned int power_state,
734 				psci_power_state_t *req_state)
735 {
736 	unsigned int state_id;
737 	int i;
738 
739 	assert(req_state);
740 
741 	/*
742 	 *  Currently we are using a linear search for finding the matching
743 	 *  entry in the idle power state array. This can be made a binary
744 	 *  search if the number of entries justify the additional complexity.
745 	 */
746 	for (i = 0; !!mtk_pm_idle_states[i]; i++) {
747 		if (power_state == mtk_pm_idle_states[i])
748 			break;
749 	}
750 
751 	/* Return error if entry not found in the idle state array */
752 	if (!mtk_pm_idle_states[i])
753 		return PSCI_E_INVALID_PARAMS;
754 
755 	i = 0;
756 	state_id = psci_get_pstate_id(power_state);
757 
758 	/* Parse the State ID and populate the state info parameter */
759 	while (state_id) {
760 		req_state->pwr_domain_state[i++] = state_id &
761 						MTK_LOCAL_PSTATE_MASK;
762 		state_id >>= MTK_LOCAL_PSTATE_WIDTH;
763 	}
764 
765 	return PSCI_E_SUCCESS;
766 }
767 #endif
768 
769 void mtk_system_pwr_domain_resume(void)
770 {
771 	console_init(MT8173_UART0_BASE, MT8173_UART_CLOCK, MT8173_BAUDRATE);
772 
773 	/* Assert system power domain is available on the platform */
774 	assert(PLAT_MAX_PWR_LVL >= MTK_PWR_LVL2);
775 
776 	plat_arm_gic_init();
777 }
778 #endif
779 
780 #if ENABLE_PLAT_COMPAT
781 /*******************************************************************************
782  * Export the platform handlers to enable psci to invoke them
783  ******************************************************************************/
784 static const plat_pm_ops_t plat_plat_pm_ops = {
785 	.affinst_standby		= plat_affinst_standby,
786 	.affinst_on			= plat_affinst_on,
787 	.affinst_off			= plat_affinst_off,
788 	.affinst_suspend		= plat_affinst_suspend,
789 	.affinst_on_finish		= plat_affinst_on_finish,
790 	.affinst_suspend_finish		= plat_affinst_suspend_finish,
791 	.system_off			= plat_system_off,
792 	.system_reset			= plat_system_reset,
793 	.get_sys_suspend_power_state	= plat_get_sys_suspend_power_state,
794 };
795 
796 /*******************************************************************************
797  * Export the platform specific power ops & initialize the mtk_platform power
798  * controller
799  ******************************************************************************/
800 int platform_setup_pm(const plat_pm_ops_t **plat_ops)
801 {
802 	*plat_ops = &plat_plat_pm_ops;
803 	return 0;
804 }
805 #else
806 static const plat_psci_ops_t plat_plat_pm_ops = {
807 	.cpu_standby			= plat_cpu_standby,
808 	.pwr_domain_on			= plat_power_domain_on,
809 	.pwr_domain_on_finish		= plat_power_domain_on_finish,
810 	.pwr_domain_off			= plat_power_domain_off,
811 	.pwr_domain_suspend		= plat_power_domain_suspend,
812 	.pwr_domain_suspend_finish	= plat_power_domain_suspend_finish,
813 	.system_off			= plat_system_off,
814 	.system_reset			= plat_system_reset,
815 	.validate_power_state		= plat_validate_power_state,
816 	.get_sys_suspend_power_state	= plat_get_sys_suspend_power_state,
817 };
818 
819 int plat_setup_psci_ops(uintptr_t sec_entrypoint,
820 			const plat_psci_ops_t **psci_ops)
821 {
822 	*psci_ops = &plat_plat_pm_ops;
823 	secure_entrypoint = sec_entrypoint;
824 	return 0;
825 }
826 
827 /*
828  * The PSCI generic code uses this API to let the platform participate in state
829  * coordination during a power management operation. It compares the platform
830  * specific local power states requested by each cpu for a given power domain
831  * and returns the coordinated target power state that the domain should
832  * enter. A platform assigns a number to a local power state. This default
833  * implementation assumes that the platform assigns these numbers in order of
834  * increasing depth of the power state i.e. for two power states X & Y, if X < Y
835  * then X represents a shallower power state than Y. As a result, the
836  * coordinated target local power state for a power domain will be the minimum
837  * of the requested local power states.
838  */
839 plat_local_state_t plat_get_target_pwr_state(unsigned int lvl,
840 					     const plat_local_state_t *states,
841 					     unsigned int ncpu)
842 {
843 	plat_local_state_t target = PLAT_MAX_OFF_STATE, temp;
844 
845 	assert(ncpu);
846 
847 	do {
848 		temp = *states++;
849 		if (temp < target)
850 			target = temp;
851 	} while (--ncpu);
852 
853 	return target;
854 }
855 #endif
856