xref: /rk3399_ARM-atf/plat/mediatek/mt8173/plat_pm.c (revision 530ceda57288aa931d0c8ba7b3066340d587cc9b)
1 /*
2  * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <drivers/arm/cci.h>
13 #include <drivers/arm/gicv2.h>
14 #include <drivers/ti/uart/uart_16550.h>
15 #include <lib/bakery_lock.h>
16 #include <lib/mmio.h>
17 #include <lib/psci/psci.h>
18 #include <plat/arm/common/plat_arm.h>
19 
20 #include <mcucfg.h>
21 #include <mt8173_def.h>
22 #include <mt_cpuxgpt.h> /* generic_timer_backup() */
23 #include <plat_private.h>
24 #include <power_tracer.h>
25 #include <rtc.h>
26 #include <scu.h>
27 #include <spm_hotplug.h>
28 #include <spm_mcdi.h>
29 #include <spm_suspend.h>
30 
31 #define MTK_PWR_LVL0	0
32 #define MTK_PWR_LVL1	1
33 #define MTK_PWR_LVL2	2
34 
35 /* Macros to read the MTK power domain state */
36 #define MTK_CORE_PWR_STATE(state)	(state)->pwr_domain_state[MTK_PWR_LVL0]
37 #define MTK_CLUSTER_PWR_STATE(state)	(state)->pwr_domain_state[MTK_PWR_LVL1]
38 #define MTK_SYSTEM_PWR_STATE(state)	((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) ?\
39 			(state)->pwr_domain_state[MTK_PWR_LVL2] : 0)
40 
41 #if PSCI_EXTENDED_STATE_ID
42 /*
43  *  The table storing the valid idle power states. Ensure that the
44  *  array entries are populated in ascending order of state-id to
45  *  enable us to use binary search during power state validation.
46  *  The table must be terminated by a NULL entry.
47  */
48 const unsigned int mtk_pm_idle_states[] = {
49 	/* State-id - 0x001 */
50 	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN,
51 		MTK_LOCAL_STATE_RET, MTK_PWR_LVL0, PSTATE_TYPE_STANDBY),
52 	/* State-id - 0x002 */
53 	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN,
54 		MTK_LOCAL_STATE_OFF, MTK_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
55 	/* State-id - 0x022 */
56 	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_OFF,
57 		MTK_LOCAL_STATE_OFF, MTK_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
58 #if PLAT_MAX_PWR_LVL > MTK_PWR_LVL1
59 	/* State-id - 0x222 */
60 	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_OFF, MTK_LOCAL_STATE_OFF,
61 		MTK_LOCAL_STATE_OFF, MTK_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
62 #endif
63 	0,
64 };
65 #endif
66 
67 struct core_context {
68 	unsigned long timer_data[8];
69 	unsigned int count;
70 	unsigned int rst;
71 	unsigned int abt;
72 	unsigned int brk;
73 };
74 
75 struct cluster_context {
76 	struct core_context core[PLATFORM_MAX_CPUS_PER_CLUSTER];
77 };
78 
79 /*
80  * Top level structure to hold the complete context of a multi cluster system
81  */
82 struct system_context {
83 	struct cluster_context cluster[PLATFORM_CLUSTER_COUNT];
84 };
85 
86 /*
87  * Top level structure which encapsulates the context of the entire system
88  */
89 static struct system_context dormant_data[1];
90 
91 static inline struct cluster_context *system_cluster(
92 						struct system_context *system,
93 						uint32_t clusterid)
94 {
95 	return &system->cluster[clusterid];
96 }
97 
98 static inline struct core_context *cluster_core(struct cluster_context *cluster,
99 						uint32_t cpuid)
100 {
101 	return &cluster->core[cpuid];
102 }
103 
104 static struct cluster_context *get_cluster_data(unsigned long mpidr)
105 {
106 	uint32_t clusterid;
107 
108 	clusterid = (mpidr & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS;
109 
110 	return system_cluster(dormant_data, clusterid);
111 }
112 
113 static struct core_context *get_core_data(unsigned long mpidr)
114 {
115 	struct cluster_context *cluster;
116 	uint32_t cpuid;
117 
118 	cluster = get_cluster_data(mpidr);
119 	cpuid = mpidr & MPIDR_CPU_MASK;
120 
121 	return cluster_core(cluster, cpuid);
122 }
123 
124 static void mt_save_generic_timer(unsigned long *container)
125 {
126 	uint64_t ctl;
127 	uint64_t val;
128 
129 	__asm__ volatile("mrs	%x0, cntkctl_el1\n\t"
130 			 "mrs	%x1, cntp_cval_el0\n\t"
131 			 "stp	%x0, %x1, [%2, #0]"
132 			 : "=&r" (ctl), "=&r" (val)
133 			 : "r" (container)
134 			 : "memory");
135 
136 	__asm__ volatile("mrs	%x0, cntp_tval_el0\n\t"
137 			 "mrs	%x1, cntp_ctl_el0\n\t"
138 			 "stp	%x0, %x1, [%2, #16]"
139 			 : "=&r" (val), "=&r" (ctl)
140 			 : "r" (container)
141 			 : "memory");
142 
143 	__asm__ volatile("mrs	%x0, cntv_tval_el0\n\t"
144 			 "mrs	%x1, cntv_ctl_el0\n\t"
145 			 "stp	%x0, %x1, [%2, #32]"
146 			 : "=&r" (val), "=&r" (ctl)
147 			 : "r" (container)
148 			 : "memory");
149 }
150 
151 static void mt_restore_generic_timer(unsigned long *container)
152 {
153 	uint64_t ctl;
154 	uint64_t val;
155 
156 	__asm__ volatile("ldp	%x0, %x1, [%2, #0]\n\t"
157 			 "msr	cntkctl_el1, %x0\n\t"
158 			 "msr	cntp_cval_el0, %x1"
159 			 : "=&r" (ctl), "=&r" (val)
160 			 : "r" (container)
161 			 : "memory");
162 
163 	__asm__ volatile("ldp	%x0, %x1, [%2, #16]\n\t"
164 			 "msr	cntp_tval_el0, %x0\n\t"
165 			 "msr	cntp_ctl_el0, %x1"
166 			 : "=&r" (val), "=&r" (ctl)
167 			 : "r" (container)
168 			 : "memory");
169 
170 	__asm__ volatile("ldp	%x0, %x1, [%2, #32]\n\t"
171 			 "msr	cntv_tval_el0, %x0\n\t"
172 			 "msr	cntv_ctl_el0, %x1"
173 			 : "=&r" (val), "=&r" (ctl)
174 			 : "r" (container)
175 			 : "memory");
176 }
177 
178 static inline uint64_t read_cntpctl(void)
179 {
180 	uint64_t cntpctl;
181 
182 	__asm__ volatile("mrs	%x0, cntp_ctl_el0"
183 			 : "=r" (cntpctl) : : "memory");
184 
185 	return cntpctl;
186 }
187 
188 static inline void write_cntpctl(uint64_t cntpctl)
189 {
190 	__asm__ volatile("msr	cntp_ctl_el0, %x0" : : "r"(cntpctl));
191 }
192 
193 static void stop_generic_timer(void)
194 {
195 	/*
196 	 * Disable the timer and mask the irq to prevent
197 	 * suprious interrupts on this cpu interface. It
198 	 * will bite us when we come back if we don't. It
199 	 * will be replayed on the inbound cluster.
200 	 */
201 	uint64_t cntpctl = read_cntpctl();
202 
203 	write_cntpctl(clr_cntp_ctl_enable(cntpctl));
204 }
205 
206 static void mt_cpu_save(unsigned long mpidr)
207 {
208 	struct core_context *core;
209 
210 	core = get_core_data(mpidr);
211 	mt_save_generic_timer(core->timer_data);
212 
213 	/* disable timer irq, and upper layer should enable it again. */
214 	stop_generic_timer();
215 }
216 
217 static void mt_cpu_restore(unsigned long mpidr)
218 {
219 	struct core_context *core;
220 
221 	core = get_core_data(mpidr);
222 	mt_restore_generic_timer(core->timer_data);
223 }
224 
225 static void mt_platform_save_context(unsigned long mpidr)
226 {
227 	/* mcusys_save_context: */
228 	mt_cpu_save(mpidr);
229 }
230 
231 static void mt_platform_restore_context(unsigned long mpidr)
232 {
233 	/* mcusys_restore_context: */
234 	mt_cpu_restore(mpidr);
235 }
236 
237 static void plat_cpu_standby(plat_local_state_t cpu_state)
238 {
239 	unsigned int scr;
240 
241 	scr = read_scr_el3();
242 	write_scr_el3(scr | SCR_IRQ_BIT);
243 	isb();
244 	dsb();
245 	wfi();
246 	write_scr_el3(scr);
247 }
248 
249 /*******************************************************************************
250  * MTK_platform handler called when an affinity instance is about to be turned
251  * on. The level and mpidr determine the affinity instance.
252  ******************************************************************************/
253 static uintptr_t secure_entrypoint;
254 
255 static int plat_power_domain_on(unsigned long mpidr)
256 {
257 	int rc = PSCI_E_SUCCESS;
258 	unsigned long cpu_id;
259 	unsigned long cluster_id;
260 	uintptr_t rv;
261 
262 	cpu_id = mpidr & MPIDR_CPU_MASK;
263 	cluster_id = mpidr & MPIDR_CLUSTER_MASK;
264 
265 	if (cluster_id)
266 		rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
267 	else
268 		rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;
269 
270 	mmio_write_32(rv, secure_entrypoint);
271 	INFO("mt_on[%ld:%ld], entry %x\n",
272 		cluster_id, cpu_id, mmio_read_32(rv));
273 
274 	spm_hotplug_on(mpidr);
275 	return rc;
276 }
277 
278 /*******************************************************************************
279  * MTK_platform handler called when an affinity instance is about to be turned
280  * off. The level and mpidr determine the affinity instance. The 'state' arg.
281  * allows the platform to decide whether the cluster is being turned off and
282  * take apt actions.
283  *
284  * CAUTION: This function is called with coherent stacks so that caches can be
285  * turned off, flushed and coherency disabled. There is no guarantee that caches
286  * will remain turned on across calls to this function as each affinity level is
287  * dealt with. So do not write & read global variables across calls. It will be
288  * wise to do flush a write to the global to prevent unpredictable results.
289  ******************************************************************************/
290 static void plat_power_domain_off(const psci_power_state_t *state)
291 {
292 	unsigned long mpidr = read_mpidr_el1();
293 
294 	/* Prevent interrupts from spuriously waking up this cpu */
295 	gicv2_cpuif_disable();
296 
297 	spm_hotplug_off(mpidr);
298 
299 	trace_power_flow(mpidr, CPU_DOWN);
300 
301 	if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
302 		/* Disable coherency if this cluster is to be turned off */
303 		plat_cci_disable();
304 
305 		trace_power_flow(mpidr, CLUSTER_DOWN);
306 	}
307 }
308 
309 /*******************************************************************************
310  * MTK_platform handler called when an affinity instance is about to be
311  * suspended. The level and mpidr determine the affinity instance. The 'state'
312  * arg. allows the platform to decide whether the cluster is being turned off
313  * and take apt actions.
314  *
315  * CAUTION: This function is called with coherent stacks so that caches can be
316  * turned off, flushed and coherency disabled. There is no guarantee that caches
317  * will remain turned on across calls to this function as each affinity level is
318  * dealt with. So do not write & read global variables across calls. It will be
319  * wise to do flush a write to the global to prevent unpredictable results.
320  ******************************************************************************/
321 static void plat_power_domain_suspend(const psci_power_state_t *state)
322 {
323 	unsigned long mpidr = read_mpidr_el1();
324 	unsigned long cluster_id;
325 	unsigned long cpu_id;
326 	uintptr_t rv;
327 
328 	cpu_id = mpidr & MPIDR_CPU_MASK;
329 	cluster_id = mpidr & MPIDR_CLUSTER_MASK;
330 
331 	if (cluster_id)
332 		rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
333 	else
334 		rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;
335 
336 	mmio_write_32(rv, secure_entrypoint);
337 
338 	if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) {
339 		spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL0);
340 		if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF)
341 			spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL1);
342 	}
343 
344 	mt_platform_save_context(mpidr);
345 
346 	/* Perform the common cluster specific operations */
347 	if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
348 		/* Disable coherency if this cluster is to be turned off */
349 		plat_cci_disable();
350 	}
351 
352 	if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
353 		disable_scu(mpidr);
354 		generic_timer_backup();
355 		spm_system_suspend();
356 		/* Prevent interrupts from spuriously waking up this cpu */
357 		gicv2_cpuif_disable();
358 	}
359 }
360 
361 /*******************************************************************************
362  * MTK_platform handler called when an affinity instance has just been powered
363  * on after being turned off earlier. The level and mpidr determine the affinity
364  * instance. The 'state' arg. allows the platform to decide whether the cluster
365  * was turned off prior to wakeup and do what's necessary to setup it up
366  * correctly.
367  ******************************************************************************/
368 void mtk_system_pwr_domain_resume(void);
369 
370 static void plat_power_domain_on_finish(const psci_power_state_t *state)
371 {
372 	unsigned long mpidr = read_mpidr_el1();
373 
374 	assert(state->pwr_domain_state[MPIDR_AFFLVL0] == MTK_LOCAL_STATE_OFF);
375 
376 	if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) &&
377 		(state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF))
378 		mtk_system_pwr_domain_resume();
379 
380 	if (state->pwr_domain_state[MPIDR_AFFLVL1] == MTK_LOCAL_STATE_OFF) {
381 		plat_cci_enable();
382 		trace_power_flow(mpidr, CLUSTER_UP);
383 	}
384 
385 	if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) &&
386 		(state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF))
387 		return;
388 
389 	/* Enable the gic cpu interface */
390 	gicv2_cpuif_enable();
391 	gicv2_pcpu_distif_init();
392 	trace_power_flow(mpidr, CPU_UP);
393 }
394 
395 /*******************************************************************************
396  * MTK_platform handler called when an affinity instance has just been powered
397  * on after having been suspended earlier. The level and mpidr determine the
398  * affinity instance.
399  ******************************************************************************/
400 static void plat_power_domain_suspend_finish(const psci_power_state_t *state)
401 {
402 	unsigned long mpidr = read_mpidr_el1();
403 
404 	if (state->pwr_domain_state[MTK_PWR_LVL0] == MTK_LOCAL_STATE_RET)
405 		return;
406 
407 	if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
408 		/* Enable the gic cpu interface */
409 		plat_arm_gic_init();
410 		spm_system_suspend_finish();
411 		enable_scu(mpidr);
412 	}
413 
414 	/* Perform the common cluster specific operations */
415 	if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
416 		/* Enable coherency if this cluster was off */
417 		plat_cci_enable();
418 	}
419 
420 	mt_platform_restore_context(mpidr);
421 
422 	if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) {
423 		spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL0);
424 		if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF)
425 			spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL1);
426 	}
427 
428 	gicv2_pcpu_distif_init();
429 }
430 
431 static void plat_get_sys_suspend_power_state(psci_power_state_t *req_state)
432 {
433 	assert(PLAT_MAX_PWR_LVL >= 2);
434 
435 	for (int i = MPIDR_AFFLVL0; i <= PLAT_MAX_PWR_LVL; i++)
436 		req_state->pwr_domain_state[i] = MTK_LOCAL_STATE_OFF;
437 }
438 
439 /*******************************************************************************
440  * MTK handlers to shutdown/reboot the system
441  ******************************************************************************/
442 static void __dead2 plat_system_off(void)
443 {
444 	INFO("MTK System Off\n");
445 
446 	rtc_bbpu_power_down();
447 
448 	wfi();
449 	ERROR("MTK System Off: operation not handled.\n");
450 	panic();
451 }
452 
453 static void __dead2 plat_system_reset(void)
454 {
455 	/* Write the System Configuration Control Register */
456 	INFO("MTK System Reset\n");
457 
458 	mmio_clrsetbits_32(MTK_WDT_BASE,
459 		(MTK_WDT_MODE_DUAL_MODE | MTK_WDT_MODE_IRQ),
460 		MTK_WDT_MODE_KEY);
461 	mmio_setbits_32(MTK_WDT_BASE, (MTK_WDT_MODE_KEY | MTK_WDT_MODE_EXTEN));
462 	mmio_setbits_32(MTK_WDT_SWRST, MTK_WDT_SWRST_KEY);
463 
464 	wfi();
465 	ERROR("MTK System Reset: operation not handled.\n");
466 	panic();
467 }
468 
469 #if !PSCI_EXTENDED_STATE_ID
470 static int plat_validate_power_state(unsigned int power_state,
471 					psci_power_state_t *req_state)
472 {
473 	int pstate = psci_get_pstate_type(power_state);
474 	int pwr_lvl = psci_get_pstate_pwrlvl(power_state);
475 	int i;
476 
477 	assert(req_state);
478 
479 	if (pwr_lvl > PLAT_MAX_PWR_LVL)
480 		return PSCI_E_INVALID_PARAMS;
481 
482 	/* Sanity check the requested state */
483 	if (pstate == PSTATE_TYPE_STANDBY) {
484 		/*
485 		 * It's possible to enter standby only on power level 0
486 		 * Ignore any other power level.
487 		 */
488 		if (pwr_lvl != 0)
489 			return PSCI_E_INVALID_PARAMS;
490 
491 		req_state->pwr_domain_state[MTK_PWR_LVL0] =
492 					MTK_LOCAL_STATE_RET;
493 	} else {
494 		for (i = 0; i <= pwr_lvl; i++)
495 			req_state->pwr_domain_state[i] =
496 					MTK_LOCAL_STATE_OFF;
497 	}
498 
499 	/*
500 	 * We expect the 'state id' to be zero.
501 	 */
502 	if (psci_get_pstate_id(power_state))
503 		return PSCI_E_INVALID_PARAMS;
504 
505 	return PSCI_E_SUCCESS;
506 }
507 #else
508 int plat_validate_power_state(unsigned int power_state,
509 				psci_power_state_t *req_state)
510 {
511 	unsigned int state_id;
512 	int i;
513 
514 	assert(req_state);
515 
516 	/*
517 	 *  Currently we are using a linear search for finding the matching
518 	 *  entry in the idle power state array. This can be made a binary
519 	 *  search if the number of entries justify the additional complexity.
520 	 */
521 	for (i = 0; !!mtk_pm_idle_states[i]; i++) {
522 		if (power_state == mtk_pm_idle_states[i])
523 			break;
524 	}
525 
526 	/* Return error if entry not found in the idle state array */
527 	if (!mtk_pm_idle_states[i])
528 		return PSCI_E_INVALID_PARAMS;
529 
530 	i = 0;
531 	state_id = psci_get_pstate_id(power_state);
532 
533 	/* Parse the State ID and populate the state info parameter */
534 	while (state_id) {
535 		req_state->pwr_domain_state[i++] = state_id &
536 						MTK_LOCAL_PSTATE_MASK;
537 		state_id >>= MTK_LOCAL_PSTATE_WIDTH;
538 	}
539 
540 	return PSCI_E_SUCCESS;
541 }
542 #endif
543 
544 void mtk_system_pwr_domain_resume(void)
545 {
546 	console_switch_state(CONSOLE_FLAG_BOOT);
547 
548 	/* Assert system power domain is available on the platform */
549 	assert(PLAT_MAX_PWR_LVL >= MTK_PWR_LVL2);
550 
551 	plat_arm_gic_init();
552 
553 	console_switch_state(CONSOLE_FLAG_RUNTIME);
554 }
555 
556 static const plat_psci_ops_t plat_plat_pm_ops = {
557 	.cpu_standby			= plat_cpu_standby,
558 	.pwr_domain_on			= plat_power_domain_on,
559 	.pwr_domain_on_finish		= plat_power_domain_on_finish,
560 	.pwr_domain_off			= plat_power_domain_off,
561 	.pwr_domain_suspend		= plat_power_domain_suspend,
562 	.pwr_domain_suspend_finish	= plat_power_domain_suspend_finish,
563 	.system_off			= plat_system_off,
564 	.system_reset			= plat_system_reset,
565 	.validate_power_state		= plat_validate_power_state,
566 	.get_sys_suspend_power_state	= plat_get_sys_suspend_power_state,
567 };
568 
569 int plat_setup_psci_ops(uintptr_t sec_entrypoint,
570 			const plat_psci_ops_t **psci_ops)
571 {
572 	*psci_ops = &plat_plat_pm_ops;
573 	secure_entrypoint = sec_entrypoint;
574 	return 0;
575 }
576 
577 /*
578  * The PSCI generic code uses this API to let the platform participate in state
579  * coordination during a power management operation. It compares the platform
580  * specific local power states requested by each cpu for a given power domain
581  * and returns the coordinated target power state that the domain should
582  * enter. A platform assigns a number to a local power state. This default
583  * implementation assumes that the platform assigns these numbers in order of
584  * increasing depth of the power state i.e. for two power states X & Y, if X < Y
585  * then X represents a shallower power state than Y. As a result, the
586  * coordinated target local power state for a power domain will be the minimum
587  * of the requested local power states.
588  */
589 plat_local_state_t plat_get_target_pwr_state(unsigned int lvl,
590 					     const plat_local_state_t *states,
591 					     unsigned int ncpu)
592 {
593 	plat_local_state_t target = PLAT_MAX_OFF_STATE, temp;
594 
595 	assert(ncpu);
596 
597 	do {
598 		temp = *states++;
599 		if (temp < target)
600 			target = temp;
601 	} while (--ncpu);
602 
603 	return target;
604 }
605