xref: /rk3399_ARM-atf/plat/intel/soc/agilex5/bl31_plat_setup.c (revision f17b741030f0011e32839a1cc07a9b048299b00d)
1 /*
2  * Copyright (c) 2019-2024, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2019-2023, Intel Corporation. All rights reserved.
4  * Copyright (c) 2024, Altera Corporation. All rights reserved.
5  *
6  * SPDX-License-Identifier: BSD-3-Clause
7  */
8 
9 #include <assert.h>
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <drivers/arm/gic_common.h>
14 #include <drivers/arm/gicv3.h>
15 #include <drivers/ti/uart/uart_16550.h>
16 #include <lib/mmio.h>
17 #include <lib/xlat_tables/xlat_mmu_helpers.h>
18 #include <lib/xlat_tables/xlat_tables_v2.h>
19 #include <plat/common/platform.h>
20 
21 #include "agilex5_cache.h"
22 #include "agilex5_power_manager.h"
23 #include "ccu/ncore_ccu.h"
24 #include "socfpga_mailbox.h"
25 #include "socfpga_private.h"
26 #include "socfpga_reset_manager.h"
27 
28 /* Get non-secure SPSR for BL33. Zephyr and Linux */
29 uint32_t arm_get_spsr_for_bl33_entry(void);
30 
31 static entry_point_info_t bl32_image_ep_info;
32 static entry_point_info_t bl33_image_ep_info;
33 
34 /* The GICv3 driver only needs to be initialized in EL3 */
35 static uintptr_t rdistif_base_addrs[PLATFORM_CORE_COUNT];
36 
37 #define SMMU_SDMMC
38 
39 entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
40 {
41 	entry_point_info_t *next_image_info;
42 
43 	next_image_info = (type == NON_SECURE) ?
44 			  &bl33_image_ep_info : &bl32_image_ep_info;
45 
46 	/* None of the images on this platform can have 0x0 as the entrypoint */
47 	if (next_image_info->pc)
48 		return next_image_info;
49 	else
50 		return NULL;
51 }
52 
53 void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
54 				u_register_t arg2, u_register_t arg3)
55 {
56 	static console_t console;
57 
58 	mmio_write_64(PLAT_SEC_ENTRY, PLAT_SEC_WARM_ENTRY);
59 
60 	console_16550_register(PLAT_INTEL_UART_BASE, PLAT_UART_CLOCK,
61 	PLAT_BAUDRATE, &console);
62 
63 	init_ncore_ccu();
64 	setup_smmu_stream_id();
65 
66 	/*
67 	 * Check params passed from BL31 should not be NULL,
68 	 */
69 	void *from_bl2 = (void *) arg0;
70 
71 #if RESET_TO_BL31
72 	/* There are no parameters from BL2 if BL31 is a reset vector */
73 	assert(from_bl2 == NULL);
74 	void *plat_params_from_bl2 = (void *) arg3;
75 
76 	assert(plat_params_from_bl2 == NULL);
77 
78 	/* Populate entry point information for BL33 */
79 	SET_PARAM_HEAD(&bl33_image_ep_info,
80 				PARAM_EP,
81 				VERSION_1,
82 				0);
83 
84 # if ARM_LINUX_KERNEL_AS_BL33
85 	/*
86 	 * According to the file ``Documentation/arm64/booting.txt`` of the
87 	 * Linux kernel tree, Linux expects the physical address of the device
88 	 * tree blob (DTB) in x0, while x1-x3 are reserved for future use and
89 	 * must be 0.
90 	 */
91 	bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
92 	bl33_image_ep_info.args.arg1 = 0U;
93 	bl33_image_ep_info.args.arg2 = 0U;
94 	bl33_image_ep_info.args.arg3 = 0U;
95 # endif
96 
97 #else /* RESET_TO_BL31 */
98 	bl_params_t *params_from_bl2 = (bl_params_t *)from_bl2;
99 
100 	assert(params_from_bl2 != NULL);
101 
102 	/*
103 	 * Copy BL32 (if populated by BL31) and BL33 entry point information.
104 	 * They are stored in Secure RAM, in BL31's address space.
105 	 */
106 
107 	if (params_from_bl2->h.type == PARAM_BL_PARAMS &&
108 		params_from_bl2->h.version >= VERSION_2) {
109 
110 		bl_params_node_t *bl_params = params_from_bl2->head;
111 
112 		while (bl_params) {
113 			if (bl_params->image_id == BL33_IMAGE_ID) {
114 				bl33_image_ep_info = *bl_params->ep_info;
115 			}
116 				bl_params = bl_params->next_params_info;
117 		}
118 	} else {
119 		struct socfpga_bl31_params *arg_from_bl2 =
120 			(struct socfpga_bl31_params *) from_bl2;
121 
122 		assert(arg_from_bl2->h.type == PARAM_BL31);
123 		assert(arg_from_bl2->h.version >= VERSION_1);
124 
125 		bl32_image_ep_info = *arg_from_bl2->bl32_ep_info;
126 		bl33_image_ep_info = *arg_from_bl2->bl33_ep_info;
127 	}
128 
129 	bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
130 	bl33_image_ep_info.args.arg1 = 0U;
131 	bl33_image_ep_info.args.arg2 = 0U;
132 	bl33_image_ep_info.args.arg3 = 0U;
133 #endif
134 
135 	/*
136 	 * Tell BL31 where the non-trusted software image
137 	 * is located and the entry state information
138 	 */
139 	bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
140 	bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry();
141 
142 	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
143 }
144 
145 static const interrupt_prop_t agx5_interrupt_props[] = {
146 	PLAT_INTEL_SOCFPGA_G1S_IRQ_PROPS(INTR_GROUP1S),
147 	PLAT_INTEL_SOCFPGA_G0_IRQ_PROPS(INTR_GROUP0)
148 };
149 
150 static const gicv3_driver_data_t plat_gicv3_gic_data = {
151 	.gicd_base = PLAT_INTEL_SOCFPGA_GICD_BASE,
152 	.gicr_base = PLAT_INTEL_SOCFPGA_GICR_BASE,
153 	.interrupt_props = agx5_interrupt_props,
154 	.interrupt_props_num = ARRAY_SIZE(agx5_interrupt_props),
155 	.rdistif_num = PLATFORM_CORE_COUNT,
156 	.rdistif_base_addrs = rdistif_base_addrs,
157 };
158 
159 /*******************************************************************************
160  * Perform any BL3-1 platform setup code
161  ******************************************************************************/
162 void bl31_platform_setup(void)
163 {
164 	socfpga_delay_timer_init();
165 
166 	/* Initialize the gic cpu and distributor interfaces */
167 	gicv3_driver_init(&plat_gicv3_gic_data);
168 	gicv3_distif_init();
169 	gicv3_rdistif_init(plat_my_core_pos());
170 	gicv3_cpuif_enable(plat_my_core_pos());
171 	mailbox_hps_stage_notify(HPS_EXECUTION_STATE_SSBL);
172 }
173 
174 const mmap_region_t plat_agilex_mmap[] = {
175 	MAP_REGION_FLAT(DRAM_BASE, DRAM_SIZE, MT_MEMORY | MT_RW | MT_NS),
176 	MAP_REGION_FLAT(PSS_BASE, PSS_SIZE, MT_DEVICE | MT_RW | MT_NS),
177 	MAP_REGION_FLAT(MPFE_BASE, MPFE_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
178 	MAP_REGION_FLAT(OCRAM_BASE, OCRAM_SIZE, MT_NON_CACHEABLE | MT_RW | MT_SECURE),
179 	MAP_REGION_FLAT(CCU_BASE, CCU_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
180 	MAP_REGION_FLAT(MEM64_BASE, MEM64_SIZE, MT_DEVICE | MT_RW | MT_NS),
181 	MAP_REGION_FLAT(GIC_BASE, GIC_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
182 	{0}
183 };
184 
185 /*******************************************************************************
186  * Perform the very early platform specific architectural setup here. At the
187  * moment this is only initializes the mmu in a quick and dirty way.
188  ******************************************************************************/
189 void bl31_plat_arch_setup(void)
190 {
191 	uint32_t boot_core = 0x00;
192 	uint32_t cpuid = 0x00;
193 
194 	cpuid = read_mpidr();
195 	boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00);
196 	NOTICE("BL31: Boot Core = %x\n", boot_core);
197 	NOTICE("BL31: CPU ID = %x\n", cpuid);
198 	INFO("BL31: Invalidate Data cache\n");
199 	invalidate_dcache_all();
200 }
201 
202 /* Get non-secure image entrypoint for BL33. Zephyr and Linux */
203 uintptr_t plat_get_ns_image_entrypoint(void)
204 {
205 #ifdef PRELOADED_BL33_BASE
206 	return PRELOADED_BL33_BASE;
207 #else
208 	return PLAT_NS_IMAGE_OFFSET;
209 #endif
210 }
211 
212 /* Get non-secure SPSR for BL33. Zephyr and Linux */
213 uint32_t arm_get_spsr_for_bl33_entry(void)
214 {
215 	unsigned int mode;
216 	uint32_t spsr;
217 
218 	/* Figure out what mode we enter the non-secure world in */
219 	mode = (el_implemented(2) != EL_IMPL_NONE) ? MODE_EL2 : MODE_EL1;
220 
221 	/*
222 	 * TODO: Consider the possibility of specifying the SPSR in
223 	 * the FIP ToC and allowing the platform to have a say as
224 	 * well.
225 	 */
226 	spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
227 	return spsr;
228 }
229 
230 /* SMP: Secondary cores BL31 setup reset vector */
231 void bl31_plat_set_secondary_cpu_entrypoint(unsigned int cpu_id)
232 {
233 	unsigned int pch_cpu = 0x00;
234 	unsigned int pchctlr_old = 0x00;
235 	unsigned int pchctlr_new = 0x00;
236 	uint32_t boot_core = 0x00;
237 
238 	boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00);
239 	/* Update the p-channel based on cpu id */
240 	pch_cpu = 1 << cpu_id;
241 
242 	if (boot_core == 0x00) {
243 		/* Update reset vector to 0x00 */
244 		mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU2,
245 (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
246 	} else {
247 		/* Update reset vector to 0x00 */
248 		mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU0,
249 (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
250 	}
251 
252 	/* Update reset vector to 0x00 */
253 	mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU1, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
254 	mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU3, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
255 
256 	/* On all cores - temporary */
257 	pchctlr_old = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
258 	pchctlr_new = pchctlr_old | (pch_cpu<<1);
259 	mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pchctlr_new);
260 
261 	/* We will only release the target secondary CPUs */
262 	/* Bit mask for each CPU BIT0-3 */
263 	mmio_write_32(RSTMGR_CPUSTRELEASE_CPUx, pch_cpu);
264 }
265 
266 void bl31_plat_set_secondary_cpu_off(void)
267 {
268 	unsigned int pch_cpu = 0x00;
269 	unsigned int pch_cpu_off = 0x00;
270 	unsigned int cpu_id = plat_my_core_pos();
271 
272 	pch_cpu_off = 1 << cpu_id;
273 
274 	pch_cpu = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
275 	pch_cpu = pch_cpu & ~(pch_cpu_off << 1);
276 
277 	mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pch_cpu);
278 }
279 
280 void bl31_plat_enable_mmu(uint32_t flags)
281 {
282 	/* TODO: Enable mmu when needed */
283 }
284