xref: /rk3399_ARM-atf/plat/intel/soc/agilex5/bl31_plat_setup.c (revision cbf956ad0b4d62f7f93fd33d975a4d961009d83f)
1 /*
2  * Copyright (c) 2019-2024, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2019-2023, Intel Corporation. All rights reserved.
4  * Copyright (c) 2024-2025, Altera Corporation. All rights reserved.
5  *
6  * SPDX-License-Identifier: BSD-3-Clause
7  */
8 
9 #include <assert.h>
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <drivers/arm/gic_common.h>
14 #include <drivers/arm/gicv3.h>
15 #include <drivers/ti/uart/uart_16550.h>
16 #include <lib/mmio.h>
17 #include <lib/xlat_tables/xlat_mmu_helpers.h>
18 #include <lib/xlat_tables/xlat_tables_v2.h>
19 #include <plat/common/platform.h>
20 
21 #include "agilex5_cache.h"
22 #include "agilex5_power_manager.h"
23 #include "ccu/ncore_ccu.h"
24 #include "socfpga_dt.h"
25 #include "socfpga_mailbox.h"
26 #include "socfpga_private.h"
27 #include "socfpga_reset_manager.h"
28 
29 /* Get non-secure SPSR for BL33. Zephyr and Linux */
30 uint32_t arm_get_spsr_for_bl33_entry(void);
31 
32 static entry_point_info_t bl32_image_ep_info;
33 static entry_point_info_t bl33_image_ep_info;
34 
35 /* The GICv3 driver only needs to be initialized in EL3 */
36 static uintptr_t rdistif_base_addrs[PLATFORM_CORE_COUNT];
37 
38 #define SMMU_SDMMC
39 
40 entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
41 {
42 	entry_point_info_t *next_image_info;
43 
44 	next_image_info = (type == NON_SECURE) ?
45 			  &bl33_image_ep_info : &bl32_image_ep_info;
46 
47 	/* None of the images on this platform can have 0x0 as the entrypoint */
48 	if (next_image_info->pc)
49 		return next_image_info;
50 	else
51 		return NULL;
52 }
53 
54 void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
55 				u_register_t arg2, u_register_t arg3)
56 {
57 	static console_t console;
58 
59 	mmio_write_64(PLAT_SEC_ENTRY, PLAT_SEC_WARM_ENTRY);
60 
61 	console_16550_register(PLAT_INTEL_UART_BASE, PLAT_UART_CLOCK,
62 			       PLAT_BAUDRATE, &console);
63 
64 	/* Enable TF-A BL31 logs when running from non-secure world also. */
65 	console_set_scope(&console,
66 		(CONSOLE_FLAG_BOOT | CONSOLE_FLAG_RUNTIME | CONSOLE_FLAG_CRASH));
67 
68 	setup_smmu_stream_id();
69 
70 	/*
71 	 * Check params passed from BL31 should not be NULL,
72 	 */
73 	void *from_bl2 = (void *) arg0;
74 
75 #if RESET_TO_BL31
76 	/* There are no parameters from BL2 if BL31 is a reset vector */
77 	assert(from_bl2 == NULL);
78 	void *plat_params_from_bl2 = (void *) arg3;
79 
80 	assert(plat_params_from_bl2 == NULL);
81 
82 	/* Populate entry point information for BL33 */
83 	SET_PARAM_HEAD(&bl33_image_ep_info,
84 				PARAM_EP,
85 				VERSION_1,
86 				0);
87 
88 # if ARM_LINUX_KERNEL_AS_BL33
89 	/*
90 	 * According to the file ``Documentation/arm64/booting.txt`` of the
91 	 * Linux kernel tree, Linux expects the physical address of the device
92 	 * tree blob (DTB) in x0, while x1-x3 are reserved for future use and
93 	 * must be 0.
94 	 */
95 	bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
96 	bl33_image_ep_info.args.arg1 = 0U;
97 	bl33_image_ep_info.args.arg2 = 0U;
98 	bl33_image_ep_info.args.arg3 = 0U;
99 # endif
100 
101 #else /* RESET_TO_BL31 */
102 	bl_params_t *params_from_bl2 = (bl_params_t *)from_bl2;
103 
104 	assert(params_from_bl2 != NULL);
105 
106 	/*
107 	 * Copy BL32 (if populated by BL31) and BL33 entry point information.
108 	 * They are stored in Secure RAM, in BL31's address space.
109 	 */
110 
111 	if (params_from_bl2->h.type == PARAM_BL_PARAMS &&
112 		params_from_bl2->h.version >= VERSION_2) {
113 
114 		bl_params_node_t *bl_params = params_from_bl2->head;
115 
116 		while (bl_params) {
117 			if (bl_params->image_id == BL33_IMAGE_ID) {
118 				bl33_image_ep_info = *bl_params->ep_info;
119 			}
120 				bl_params = bl_params->next_params_info;
121 		}
122 	} else {
123 		struct socfpga_bl31_params *arg_from_bl2 =
124 			(struct socfpga_bl31_params *) from_bl2;
125 
126 		assert(arg_from_bl2->h.type == PARAM_BL31);
127 		assert(arg_from_bl2->h.version >= VERSION_1);
128 
129 		bl32_image_ep_info = *arg_from_bl2->bl32_ep_info;
130 		bl33_image_ep_info = *arg_from_bl2->bl33_ep_info;
131 	}
132 
133 	bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
134 	bl33_image_ep_info.args.arg1 = 0U;
135 	bl33_image_ep_info.args.arg2 = 0U;
136 	bl33_image_ep_info.args.arg3 = 0U;
137 #endif
138 
139 	/*
140 	 * Tell BL31 where the non-trusted software image
141 	 * is located and the entry state information
142 	 */
143 	bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
144 	bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry();
145 
146 	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
147 }
148 
149 static const interrupt_prop_t agx5_interrupt_props[] = {
150 	PLAT_INTEL_SOCFPGA_G1S_IRQ_PROPS(INTR_GROUP1S),
151 	PLAT_INTEL_SOCFPGA_G0_IRQ_PROPS(INTR_GROUP0)
152 };
153 
154 gicv3_driver_data_t plat_gicv3_gic_data = {
155 	.gicd_base = PLAT_INTEL_SOCFPGA_GICD_BASE,
156 	.gicr_base = PLAT_INTEL_SOCFPGA_GICR_BASE,
157 	.interrupt_props = agx5_interrupt_props,
158 	.interrupt_props_num = ARRAY_SIZE(agx5_interrupt_props),
159 	.rdistif_num = PLATFORM_CORE_COUNT,
160 	.rdistif_base_addrs = rdistif_base_addrs,
161 };
162 
163 /*******************************************************************************
164  * Perform any BL3-1 platform setup code
165  ******************************************************************************/
166 void bl31_platform_setup(void)
167 {
168 	socfpga_delay_timer_init();
169 
170 	/* TODO: DTB not available */
171 	// socfpga_dt_populate_gicv3_config(SOCFPGA_DTB_BASE, &plat_gicv3_gic_data);
172 	// NOTICE("SOCFPGA: GIC GICD base address 0x%lx\n", plat_gicv3_gic_data.gicd_base);
173 	// NOTICE("SOCFPGA: GIC GICR base address 0x%lx\n", plat_gicv3_gic_data.gicr_base);
174 
175 	/* Initialize the gic cpu and distributor interfaces */
176 	gicv3_driver_init(&plat_gicv3_gic_data);
177 	gicv3_distif_init();
178 	gicv3_rdistif_init(plat_my_core_pos());
179 	gicv3_cpuif_enable(plat_my_core_pos());
180 
181 #if SIP_SVC_V3
182 	/*
183 	 * Re-initialize the mailbox to include V3 specific routines.
184 	 * In V3, this re-initialize is required because prior to BL31, U-Boot
185 	 * SPL has its own mailbox settings and this initialization will
186 	 * override to those settings as required by the V3 framework.
187 	 */
188 	mailbox_init();
189 #endif
190 
191 	mailbox_hps_stage_notify(HPS_EXECUTION_STATE_SSBL);
192 }
193 
194 const mmap_region_t plat_agilex_mmap[] = {
195 	MAP_REGION_FLAT(DRAM_BASE, DRAM_SIZE, MT_MEMORY | MT_RW | MT_NS),
196 	MAP_REGION_FLAT(PSS_BASE, PSS_SIZE, MT_DEVICE | MT_RW | MT_NS),
197 	MAP_REGION_FLAT(MPFE_BASE, MPFE_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
198 	MAP_REGION_FLAT(OCRAM_BASE, OCRAM_SIZE, MT_NON_CACHEABLE | MT_RW | MT_SECURE),
199 	MAP_REGION_FLAT(CCU_BASE, CCU_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
200 	MAP_REGION_FLAT(MEM64_BASE, MEM64_SIZE, MT_DEVICE | MT_RW | MT_NS),
201 	MAP_REGION_FLAT(GIC_BASE, GIC_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
202 	{0}
203 };
204 
205 /*******************************************************************************
206  * Perform the very early platform specific architectural setup here. At the
207  * moment this is only initializes the mmu in a quick and dirty way.
208  ******************************************************************************/
209 void bl31_plat_arch_setup(void)
210 {
211 	uint32_t boot_core = 0x00;
212 	uint32_t cpuid = 0x00;
213 
214 	cpuid = MPIDR_AFFLVL1_VAL(read_mpidr());
215 	boot_core = ((mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00) >> 10);
216 	NOTICE("SOCFPGA: Boot Core = %x\n", boot_core);
217 	NOTICE("SOCFPGA: CPU ID = %x\n", cpuid);
218 	INFO("SOCFPGA: Invalidate Data cache\n");
219 	invalidate_dcache_all();
220 	/* Invalidate for NS EL2 and EL1 */
221 	invalidate_cache_low_el();
222 
223 	NOTICE("SOCFPGA: Setting CLUSTERECTRL_EL1\n");
224 	setup_clusterectlr_el1();
225 }
226 
227 /* Get non-secure image entrypoint for BL33. Zephyr and Linux */
228 uintptr_t plat_get_ns_image_entrypoint(void)
229 {
230 #ifdef PRELOADED_BL33_BASE
231 	return PRELOADED_BL33_BASE;
232 #else
233 	return PLAT_NS_IMAGE_OFFSET;
234 #endif
235 }
236 
237 /* Get non-secure SPSR for BL33. Zephyr and Linux */
238 uint32_t arm_get_spsr_for_bl33_entry(void)
239 {
240 	unsigned int mode;
241 	uint32_t spsr;
242 
243 	/* Figure out what mode we enter the non-secure world in */
244 	mode = (el_implemented(2) != EL_IMPL_NONE) ? MODE_EL2 : MODE_EL1;
245 
246 	/*
247 	 * TODO: Consider the possibility of specifying the SPSR in
248 	 * the FIP ToC and allowing the platform to have a say as
249 	 * well.
250 	 */
251 	spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
252 	return spsr;
253 }
254 
255 /* SMP: Secondary cores BL31 setup reset vector */
256 void bl31_plat_set_secondary_cpu_entrypoint(unsigned int cpu_id)
257 {
258 	unsigned int pch_cpu = 0x00;
259 	unsigned int pchctlr_old = 0x00;
260 	unsigned int pchctlr_new = 0x00;
261 	uint32_t boot_core = 0x00;
262 
263 	/* Set bit for SMP secondary cores boot */
264 	mmio_clrsetbits_32(L2_RESET_DONE_REG, BS_REG_MAGIC_KEYS_MASK,
265 			   SMP_SEC_CORE_BOOT_REQ);
266 	boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00);
267 	/* Update the p-channel based on cpu id */
268 	pch_cpu = 1 << cpu_id;
269 
270 	if (boot_core == 0x00) {
271 		/* Update reset vector to 0x00 */
272 		mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU2,
273 (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
274 	} else {
275 		/* Update reset vector to 0x00 */
276 		mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU0,
277 (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
278 	}
279 
280 	/* Update reset vector to 0x00 */
281 	mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU1, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
282 	mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU3, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
283 
284 	/* On all cores - temporary */
285 	pchctlr_old = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
286 	pchctlr_new = pchctlr_old | (pch_cpu<<1);
287 	mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pchctlr_new);
288 
289 	/* We will only release the target secondary CPUs */
290 	/* Bit mask for each CPU BIT0-3 */
291 	mmio_write_32(RSTMGR_CPUSTRELEASE_CPUx, pch_cpu);
292 }
293 
294 void bl31_plat_reset_secondary_cpu(unsigned int cpu_id)
295 {
296 	uint32_t mask = 0x1;
297 	uint32_t value = 0;
298 	uint32_t pwrctlr_addr = 0;
299 	uint32_t pwrstat_addr = 0;
300 	uint32_t ret = 0;
301 
302 	mask <<= cpu_id;
303 
304 	switch (cpu_id) {
305 	case 0:
306 		pwrctlr_addr = AGX5_PWRMGR(CPU_PWRCTLR0);
307 		pwrstat_addr = AGX5_PWRMGR(CPU_PWRSTAT0);
308 		break;
309 	case 1:
310 		pwrctlr_addr = AGX5_PWRMGR(CPU_PWRCTLR1);
311 		pwrstat_addr = AGX5_PWRMGR(CPU_PWRSTAT1);
312 		break;
313 	case 2:
314 		pwrctlr_addr = AGX5_PWRMGR(CPU_PWRCTLR2);
315 		pwrstat_addr = AGX5_PWRMGR(CPU_PWRSTAT2);
316 		break;
317 	case 3:
318 		pwrctlr_addr = AGX5_PWRMGR(CPU_PWRCTLR3);
319 		pwrstat_addr = AGX5_PWRMGR(CPU_PWRSTAT3);
320 		break;
321 	default:
322 		ERROR("BL31: %s: Invalid CPU ID\n", __func__);
323 		break;
324 	}
325 
326 	/* PSTATE = 0, RUN_PCH = 1 */
327 	mmio_write_32(pwrctlr_addr, AGX5_PWRMGR_CPU_RUN_PCH(1));
328 
329 	/* Poll for CPU OFF */
330 	SOCFPGA_POLL(!((AGX5_PWRMGR_CPU_RUN_PCH(
331 		     mmio_read_32(pwrstat_addr)) == 0) ||
332 		     (AGX5_PWRMGR_CPU_SINGLE_FSM_STATE(
333 		     mmio_read_32(pwrstat_addr)) != 0)),
334 		     AGX5_PWRMGR_CPU_POLL_COUNT,
335 		     AGX5_PWRMGR_CPU_DELAY_10_US, udelay, ret);
336 
337 	if (ret != 0)
338 		ERROR("BL31: %s: Timeout when polling for CPU OFF\n", __func__);
339 
340 	/* Performs the warm reset CPUx */
341 	value = mmio_read_32(SOCFPGA_SYSMGR(BOOT_SCRATCH_WARM_9));
342 	mmio_write_32(SOCFPGA_SYSMGR(BOOT_SCRATCH_WARM_9), value | mask);
343 	udelay(1);
344 	mmio_write_32(SOCFPGA_SYSMGR(BOOT_SCRATCH_WARM_9), value & ~mask);
345 	udelay(1);
346 
347 	/* Power up sequence */
348 	mmio_write_32(pwrctlr_addr, AGX5_PWRMGR_CPU_PROG_CPU_ON_STATE |
349 		      AGX5_PWRMGR_CPU_RUN_PCH(1));
350 
351 	/* Poll for CPU ON */
352 	SOCFPGA_POLL(!((AGX5_PWRMGR_CPU_RUN_PCH(
353 		     mmio_read_32(pwrstat_addr)) == 0) ||
354 		     AGX5_PWRMGR_CPU_SINGLE_FSM_STATE(
355 		     mmio_read_32(pwrstat_addr)) == 0),
356 		     AGX5_PWRMGR_CPU_POLL_COUNT,
357 		     AGX5_PWRMGR_CPU_DELAY_10_US, udelay, ret);
358 	if (ret !=0 )
359 		ERROR("BL31: %s: Timeout when polling for CPU ON\n", __func__);
360 }
361 
362 void bl31_plat_set_secondary_cpu_off(void)
363 {
364 	unsigned int pch_cpu = 0x00;
365 	unsigned int pch_cpu_off = 0x00;
366 	unsigned int cpu_id = plat_my_core_pos();
367 
368 	pch_cpu_off = 1 << cpu_id;
369 
370 	pch_cpu = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
371 	pch_cpu = pch_cpu & ~(pch_cpu_off << 1);
372 
373 	mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pch_cpu);
374 }
375 
376 void setup_clusterectlr_el1(void)
377 {
378 	uint64_t value = 0;
379 
380 	/* Read CLUSTERECTLR_EL1 */
381 	asm volatile("mrs %0, S3_0_C15_C3_4" : "=r"(value));
382 
383 	/* Disable broadcasting atomics */
384 	value |= 0x80; /* set bit 7 */
385 	/* Disable sending data with clean evicts */
386 	value &= 0xFFFFBFFF; /* Mask out bit 14 */
387 
388 	/* Write CLUSTERECTLR_EL1 */
389 	asm volatile("msr S3_0_C15_C3_4, %0" :: "r"(value));
390 }
391 
392 void bl31_plat_runtime_setup(void)
393 {
394 	/* Dummy override function. */
395 }
396 
397 void bl31_plat_enable_mmu(uint32_t flags)
398 {
399 	/* TODO: Enable mmu when needed */
400 }
401