1 /* 2 * Copyright (c) 2019-2024, ARM Limited and Contributors. All rights reserved. 3 * Copyright (c) 2019-2023, Intel Corporation. All rights reserved. 4 * Copyright (c) 2024-2025, Altera Corporation. All rights reserved. 5 * 6 * SPDX-License-Identifier: BSD-3-Clause 7 */ 8 9 #include <assert.h> 10 #include <arch.h> 11 #include <arch_helpers.h> 12 #include <common/bl_common.h> 13 #include <drivers/arm/gic_common.h> 14 #include <drivers/arm/gicv3.h> 15 #include <drivers/ti/uart/uart_16550.h> 16 #include <lib/mmio.h> 17 #include <lib/xlat_tables/xlat_mmu_helpers.h> 18 #include <lib/xlat_tables/xlat_tables_v2.h> 19 #include <plat/common/platform.h> 20 21 #include "agilex5_cache.h" 22 #include "agilex5_power_manager.h" 23 #include "ccu/ncore_ccu.h" 24 #include "socfpga_dt.h" 25 #include "socfpga_mailbox.h" 26 #include "socfpga_private.h" 27 #include "socfpga_reset_manager.h" 28 29 /* Get non-secure SPSR for BL33. Zephyr and Linux */ 30 uint32_t arm_get_spsr_for_bl33_entry(void); 31 32 static entry_point_info_t bl32_image_ep_info; 33 static entry_point_info_t bl33_image_ep_info; 34 35 /* The GICv3 driver only needs to be initialized in EL3 */ 36 static uintptr_t rdistif_base_addrs[PLATFORM_CORE_COUNT]; 37 38 #define SMMU_SDMMC 39 40 entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type) 41 { 42 entry_point_info_t *next_image_info; 43 44 next_image_info = (type == NON_SECURE) ? 45 &bl33_image_ep_info : &bl32_image_ep_info; 46 47 /* None of the images on this platform can have 0x0 as the entrypoint */ 48 if (next_image_info->pc) 49 return next_image_info; 50 else 51 return NULL; 52 } 53 54 void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1, 55 u_register_t arg2, u_register_t arg3) 56 { 57 static console_t console; 58 59 mmio_write_64(PLAT_SEC_ENTRY, PLAT_SEC_WARM_ENTRY); 60 61 console_16550_register(PLAT_INTEL_UART_BASE, PLAT_UART_CLOCK, 62 PLAT_BAUDRATE, &console); 63 64 /* Enable TF-A BL31 logs when running from non-secure world also. */ 65 console_set_scope(&console, 66 (CONSOLE_FLAG_BOOT | CONSOLE_FLAG_RUNTIME | CONSOLE_FLAG_CRASH)); 67 68 setup_smmu_stream_id(); 69 70 /* 71 * Check params passed from BL31 should not be NULL, 72 */ 73 void *from_bl2 = (void *) arg0; 74 75 #if RESET_TO_BL31 76 /* There are no parameters from BL2 if BL31 is a reset vector */ 77 assert(from_bl2 == NULL); 78 void *plat_params_from_bl2 = (void *) arg3; 79 80 assert(plat_params_from_bl2 == NULL); 81 82 /* Populate entry point information for BL33 */ 83 SET_PARAM_HEAD(&bl33_image_ep_info, 84 PARAM_EP, 85 VERSION_1, 86 0); 87 88 # if ARM_LINUX_KERNEL_AS_BL33 89 /* 90 * According to the file ``Documentation/arm64/booting.txt`` of the 91 * Linux kernel tree, Linux expects the physical address of the device 92 * tree blob (DTB) in x0, while x1-x3 are reserved for future use and 93 * must be 0. 94 */ 95 bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE; 96 bl33_image_ep_info.args.arg1 = 0U; 97 bl33_image_ep_info.args.arg2 = 0U; 98 bl33_image_ep_info.args.arg3 = 0U; 99 # endif 100 101 #else /* RESET_TO_BL31 */ 102 bl_params_t *params_from_bl2 = (bl_params_t *)from_bl2; 103 104 assert(params_from_bl2 != NULL); 105 106 /* 107 * Copy BL32 (if populated by BL31) and BL33 entry point information. 108 * They are stored in Secure RAM, in BL31's address space. 109 */ 110 111 if (params_from_bl2->h.type == PARAM_BL_PARAMS && 112 params_from_bl2->h.version >= VERSION_2) { 113 114 bl_params_node_t *bl_params = params_from_bl2->head; 115 116 while (bl_params) { 117 if (bl_params->image_id == BL33_IMAGE_ID) { 118 bl33_image_ep_info = *bl_params->ep_info; 119 } 120 bl_params = bl_params->next_params_info; 121 } 122 } else { 123 struct socfpga_bl31_params *arg_from_bl2 = 124 (struct socfpga_bl31_params *) from_bl2; 125 126 assert(arg_from_bl2->h.type == PARAM_BL31); 127 assert(arg_from_bl2->h.version >= VERSION_1); 128 129 bl32_image_ep_info = *arg_from_bl2->bl32_ep_info; 130 bl33_image_ep_info = *arg_from_bl2->bl33_ep_info; 131 } 132 133 bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE; 134 bl33_image_ep_info.args.arg1 = 0U; 135 bl33_image_ep_info.args.arg2 = 0U; 136 bl33_image_ep_info.args.arg3 = 0U; 137 #endif 138 139 /* 140 * Tell BL31 where the non-trusted software image 141 * is located and the entry state information 142 */ 143 bl33_image_ep_info.pc = plat_get_ns_image_entrypoint(); 144 bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry(); 145 146 SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE); 147 } 148 149 static const interrupt_prop_t agx5_interrupt_props[] = { 150 PLAT_INTEL_SOCFPGA_G1S_IRQ_PROPS(INTR_GROUP1S), 151 PLAT_INTEL_SOCFPGA_G0_IRQ_PROPS(INTR_GROUP0) 152 }; 153 154 gicv3_driver_data_t plat_gicv3_gic_data = { 155 .gicd_base = PLAT_INTEL_SOCFPGA_GICD_BASE, 156 .gicr_base = PLAT_INTEL_SOCFPGA_GICR_BASE, 157 .interrupt_props = agx5_interrupt_props, 158 .interrupt_props_num = ARRAY_SIZE(agx5_interrupt_props), 159 .rdistif_num = PLATFORM_CORE_COUNT, 160 .rdistif_base_addrs = rdistif_base_addrs, 161 }; 162 163 /******************************************************************************* 164 * Perform any BL3-1 platform setup code 165 ******************************************************************************/ 166 void bl31_platform_setup(void) 167 { 168 socfpga_delay_timer_init(); 169 170 /* TODO: DTB not available */ 171 // socfpga_dt_populate_gicv3_config(SOCFPGA_DTB_BASE, &plat_gicv3_gic_data); 172 // NOTICE("SOCFPGA: GIC GICD base address 0x%lx\n", plat_gicv3_gic_data.gicd_base); 173 // NOTICE("SOCFPGA: GIC GICR base address 0x%lx\n", plat_gicv3_gic_data.gicr_base); 174 175 /* Initialize the gic cpu and distributor interfaces */ 176 gicv3_driver_init(&plat_gicv3_gic_data); 177 gicv3_distif_init(); 178 gicv3_rdistif_init(plat_my_core_pos()); 179 gicv3_cpuif_enable(plat_my_core_pos()); 180 mailbox_hps_stage_notify(HPS_EXECUTION_STATE_SSBL); 181 } 182 183 const mmap_region_t plat_agilex_mmap[] = { 184 MAP_REGION_FLAT(DRAM_BASE, DRAM_SIZE, MT_MEMORY | MT_RW | MT_NS), 185 MAP_REGION_FLAT(PSS_BASE, PSS_SIZE, MT_DEVICE | MT_RW | MT_NS), 186 MAP_REGION_FLAT(MPFE_BASE, MPFE_SIZE, MT_DEVICE | MT_RW | MT_SECURE), 187 MAP_REGION_FLAT(OCRAM_BASE, OCRAM_SIZE, MT_NON_CACHEABLE | MT_RW | MT_SECURE), 188 MAP_REGION_FLAT(CCU_BASE, CCU_SIZE, MT_DEVICE | MT_RW | MT_SECURE), 189 MAP_REGION_FLAT(MEM64_BASE, MEM64_SIZE, MT_DEVICE | MT_RW | MT_NS), 190 MAP_REGION_FLAT(GIC_BASE, GIC_SIZE, MT_DEVICE | MT_RW | MT_SECURE), 191 {0} 192 }; 193 194 /******************************************************************************* 195 * Perform the very early platform specific architectural setup here. At the 196 * moment this is only initializes the mmu in a quick and dirty way. 197 ******************************************************************************/ 198 void bl31_plat_arch_setup(void) 199 { 200 uint32_t boot_core = 0x00; 201 uint32_t cpuid = 0x00; 202 203 cpuid = MPIDR_AFFLVL1_VAL(read_mpidr()); 204 boot_core = ((mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00) >> 10); 205 NOTICE("SOCFPGA: Boot Core = %x\n", boot_core); 206 NOTICE("SOCFPGA: CPU ID = %x\n", cpuid); 207 INFO("SOCFPGA: Invalidate Data cache\n"); 208 invalidate_dcache_all(); 209 210 /* Invalidate for NS EL2 and EL1 */ 211 invalidate_cache_low_el(); 212 } 213 214 /* Get non-secure image entrypoint for BL33. Zephyr and Linux */ 215 uintptr_t plat_get_ns_image_entrypoint(void) 216 { 217 #ifdef PRELOADED_BL33_BASE 218 return PRELOADED_BL33_BASE; 219 #else 220 return PLAT_NS_IMAGE_OFFSET; 221 #endif 222 } 223 224 /* Get non-secure SPSR for BL33. Zephyr and Linux */ 225 uint32_t arm_get_spsr_for_bl33_entry(void) 226 { 227 unsigned int mode; 228 uint32_t spsr; 229 230 /* Figure out what mode we enter the non-secure world in */ 231 mode = (el_implemented(2) != EL_IMPL_NONE) ? MODE_EL2 : MODE_EL1; 232 233 /* 234 * TODO: Consider the possibility of specifying the SPSR in 235 * the FIP ToC and allowing the platform to have a say as 236 * well. 237 */ 238 spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); 239 return spsr; 240 } 241 242 /* SMP: Secondary cores BL31 setup reset vector */ 243 void bl31_plat_set_secondary_cpu_entrypoint(unsigned int cpu_id) 244 { 245 unsigned int pch_cpu = 0x00; 246 unsigned int pchctlr_old = 0x00; 247 unsigned int pchctlr_new = 0x00; 248 uint32_t boot_core = 0x00; 249 250 /* Set bit for SMP secondary cores boot */ 251 mmio_clrsetbits_32(L2_RESET_DONE_REG, BS_REG_MAGIC_KEYS_MASK, 252 SMP_SEC_CORE_BOOT_REQ); 253 boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00); 254 /* Update the p-channel based on cpu id */ 255 pch_cpu = 1 << cpu_id; 256 257 if (boot_core == 0x00) { 258 /* Update reset vector to 0x00 */ 259 mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU2, 260 (uint64_t) plat_secondary_cpus_bl31_entry >> 2); 261 } else { 262 /* Update reset vector to 0x00 */ 263 mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU0, 264 (uint64_t) plat_secondary_cpus_bl31_entry >> 2); 265 } 266 267 /* Update reset vector to 0x00 */ 268 mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU1, (uint64_t) plat_secondary_cpus_bl31_entry >> 2); 269 mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU3, (uint64_t) plat_secondary_cpus_bl31_entry >> 2); 270 271 /* On all cores - temporary */ 272 pchctlr_old = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR)); 273 pchctlr_new = pchctlr_old | (pch_cpu<<1); 274 mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pchctlr_new); 275 276 /* We will only release the target secondary CPUs */ 277 /* Bit mask for each CPU BIT0-3 */ 278 mmio_write_32(RSTMGR_CPUSTRELEASE_CPUx, pch_cpu); 279 } 280 281 void bl31_plat_set_secondary_cpu_off(void) 282 { 283 unsigned int pch_cpu = 0x00; 284 unsigned int pch_cpu_off = 0x00; 285 unsigned int cpu_id = plat_my_core_pos(); 286 287 pch_cpu_off = 1 << cpu_id; 288 289 pch_cpu = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR)); 290 pch_cpu = pch_cpu & ~(pch_cpu_off << 1); 291 292 mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pch_cpu); 293 } 294 295 void bl31_plat_runtime_setup(void) 296 { 297 /* Dummy override function. */ 298 } 299 300 void bl31_plat_enable_mmu(uint32_t flags) 301 { 302 /* TODO: Enable mmu when needed */ 303 } 304