xref: /rk3399_ARM-atf/plat/hisilicon/hikey960/hikey960_bl1_setup.c (revision 6ab136c258ed4616d8cf1ebf1c5a4a74b75d35bc)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <arm_gic.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <console.h>
12 #include <debug.h>
13 #include <delay_timer.h>
14 #include <dw_ufs.h>
15 #include <errno.h>
16 #include <generic_delay_timer.h>
17 #include <gicv2.h>
18 #include <hi3660.h>
19 #include <mmio.h>
20 #include <platform.h>
21 #include <platform_def.h>
22 #include <string.h>
23 #include <tbbr/tbbr_img_desc.h>
24 #include <ufs.h>
25 
26 #include "../../bl1/bl1_private.h"
27 #include "hikey960_def.h"
28 #include "hikey960_private.h"
29 
30 enum {
31 	BOOT_MODE_RECOVERY = 0,
32 	BOOT_MODE_NORMAL,
33 	BOOT_MODE_MASK = 1,
34 };
35 
36 /*
37  * Declarations of linker defined symbols which will help us find the layout
38  * of trusted RAM
39  */
40 
41 /* Data structure which holds the extents of the trusted RAM for BL1 */
42 static meminfo_t bl1_tzram_layout;
43 
44 /******************************************************************************
45  * On a GICv2 system, the Group 1 secure interrupts are treated as Group 0
46  * interrupts.
47  *****************************************************************************/
48 const unsigned int g0_interrupt_array[] = {
49 	IRQ_SEC_PHY_TIMER,
50 	IRQ_SEC_SGI_0
51 };
52 
53 const gicv2_driver_data_t hikey960_gic_data = {
54 	.gicd_base = GICD_REG_BASE,
55 	.gicc_base = GICC_REG_BASE,
56 	.g0_interrupt_num = ARRAY_SIZE(g0_interrupt_array),
57 	.g0_interrupt_array = g0_interrupt_array,
58 };
59 
60 meminfo_t *bl1_plat_sec_mem_layout(void)
61 {
62 	return &bl1_tzram_layout;
63 }
64 
65 /*******************************************************************************
66  * Function that takes a memory layout into which BL2 has been loaded and
67  * populates a new memory layout for BL2 that ensures that BL1's data sections
68  * resident in secure RAM are not visible to BL2.
69  ******************************************************************************/
70 void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
71 			     meminfo_t *bl2_mem_layout)
72 {
73 
74 	assert(bl1_mem_layout != NULL);
75 	assert(bl2_mem_layout != NULL);
76 
77 	/*
78 	 * Cannot remove BL1 RW data from the scope of memory visible to BL2
79 	 * like arm platforms because they overlap in hikey960
80 	 */
81 	bl2_mem_layout->total_base = BL2_BASE;
82 	bl2_mem_layout->total_size = NS_BL1U_LIMIT - BL2_BASE;
83 
84 	flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
85 }
86 
87 /*
88  * Perform any BL1 specific platform actions.
89  */
90 void bl1_early_platform_setup(void)
91 {
92 	unsigned int id, uart_base;
93 
94 	generic_delay_timer_init();
95 	hikey960_read_boardid(&id);
96 	if (id == 5300)
97 		uart_base = PL011_UART5_BASE;
98 	else
99 		uart_base = PL011_UART6_BASE;
100 	/* Initialize the console to provide early debug support */
101 	console_init(uart_base, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
102 
103 	/* Allow BL1 to see the whole Trusted RAM */
104 	bl1_tzram_layout.total_base = BL1_RW_BASE;
105 	bl1_tzram_layout.total_size = BL1_RW_SIZE;
106 
107 	INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
108 	     BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */
109 }
110 
111 /*
112  * Perform the very early platform specific architecture setup here. At the
113  * moment this only does basic initialization. Later architectural setup
114  * (bl1_arch_setup()) does not do anything platform specific.
115  */
116 void bl1_plat_arch_setup(void)
117 {
118 	hikey960_init_mmu_el3(bl1_tzram_layout.total_base,
119 			      bl1_tzram_layout.total_size,
120 			      BL1_RO_BASE,
121 			      BL1_RO_LIMIT,
122 			      BL_COHERENT_RAM_BASE,
123 			      BL_COHERENT_RAM_END);
124 }
125 
126 static void hikey960_ufs_reset(void)
127 {
128 	unsigned int data, mask;
129 
130 	mmio_write_32(CRG_PERDIS7_REG, 1 << 14);
131 	mmio_clrbits_32(UFS_SYS_PHY_CLK_CTRL_REG, BIT_SYSCTRL_REF_CLOCK_EN);
132 	do {
133 		data = mmio_read_32(UFS_SYS_PHY_CLK_CTRL_REG);
134 	} while (data & BIT_SYSCTRL_REF_CLOCK_EN);
135 	/* use abb clk */
136 	mmio_clrbits_32(UFS_SYS_UFS_SYSCTRL_REG, BIT_UFS_REFCLK_SRC_SE1);
137 	mmio_clrbits_32(UFS_SYS_PHY_ISO_EN_REG, BIT_UFS_REFCLK_ISO_EN);
138 	mmio_write_32(PCTRL_PERI_CTRL3_REG, (1 << 0) | (1 << 16));
139 	mdelay(1);
140 	mmio_write_32(CRG_PEREN7_REG, 1 << 14);
141 	mmio_setbits_32(UFS_SYS_PHY_CLK_CTRL_REG, BIT_SYSCTRL_REF_CLOCK_EN);
142 
143 	mmio_write_32(CRG_PERRSTEN3_REG, PERI_UFS_BIT);
144 	do {
145 		data = mmio_read_32(CRG_PERRSTSTAT3_REG);
146 	} while ((data & PERI_UFS_BIT) == 0);
147 	mmio_setbits_32(UFS_SYS_PSW_POWER_CTRL_REG, BIT_UFS_PSW_MTCMOS_EN);
148 	mdelay(1);
149 	mmio_setbits_32(UFS_SYS_HC_LP_CTRL_REG, BIT_SYSCTRL_PWR_READY);
150 	mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG,
151 		      MASK_UFS_DEVICE_RESET);
152 	/* clear SC_DIV_UFS_PERIBUS */
153 	mask = SC_DIV_UFS_PERIBUS << 16;
154 	mmio_write_32(CRG_CLKDIV17_REG, mask);
155 	/* set SC_DIV_UFSPHY_CFG(3) */
156 	mask = SC_DIV_UFSPHY_CFG_MASK << 16;
157 	data = SC_DIV_UFSPHY_CFG(3);
158 	mmio_write_32(CRG_CLKDIV16_REG, mask | data);
159 	data = mmio_read_32(UFS_SYS_PHY_CLK_CTRL_REG);
160 	data &= ~MASK_SYSCTRL_CFG_CLOCK_FREQ;
161 	data |= 0x39;
162 	mmio_write_32(UFS_SYS_PHY_CLK_CTRL_REG, data);
163 	mmio_clrbits_32(UFS_SYS_PHY_CLK_CTRL_REG, MASK_SYSCTRL_REF_CLOCK_SEL);
164 	mmio_setbits_32(UFS_SYS_CLOCK_GATE_BYPASS_REG,
165 			MASK_UFS_CLK_GATE_BYPASS);
166 	mmio_setbits_32(UFS_SYS_UFS_SYSCTRL_REG, MASK_UFS_SYSCTRL_BYPASS);
167 
168 	mmio_setbits_32(UFS_SYS_PSW_CLK_CTRL_REG, BIT_SYSCTRL_PSW_CLK_EN);
169 	mmio_clrbits_32(UFS_SYS_PSW_POWER_CTRL_REG, BIT_UFS_PSW_ISO_CTRL);
170 	mmio_clrbits_32(UFS_SYS_PHY_ISO_EN_REG, BIT_UFS_PHY_ISO_CTRL);
171 	mmio_clrbits_32(UFS_SYS_HC_LP_CTRL_REG, BIT_SYSCTRL_LP_ISOL_EN);
172 	mmio_write_32(CRG_PERRSTDIS3_REG, PERI_ARST_UFS_BIT);
173 	mmio_setbits_32(UFS_SYS_RESET_CTRL_EN_REG, BIT_SYSCTRL_LP_RESET_N);
174 	mdelay(1);
175 	mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG,
176 		      MASK_UFS_DEVICE_RESET | BIT_UFS_DEVICE_RESET);
177 	mdelay(20);
178 	mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG,
179 		      0x03300330);
180 
181 	mmio_write_32(CRG_PERRSTDIS3_REG, PERI_UFS_BIT);
182 	do {
183 		data = mmio_read_32(CRG_PERRSTSTAT3_REG);
184 	} while (data & PERI_UFS_BIT);
185 }
186 
187 static void hikey960_ufs_init(void)
188 {
189 	dw_ufs_params_t ufs_params;
190 
191 	memset(&ufs_params, 0, sizeof(ufs_params));
192 	ufs_params.reg_base = UFS_REG_BASE;
193 	ufs_params.desc_base = HIKEY960_UFS_DESC_BASE;
194 	ufs_params.desc_size = HIKEY960_UFS_DESC_SIZE;
195 
196 	if ((ufs_params.flags & UFS_FLAGS_SKIPINIT) == 0)
197 		hikey960_ufs_reset();
198 	dw_ufs_init(&ufs_params);
199 }
200 
201 /*
202  * Function which will perform any remaining platform-specific setup that can
203  * occur after the MMU and data cache have been enabled.
204  */
205 void bl1_platform_setup(void)
206 {
207 	hikey960_clk_init();
208 	hikey960_pmu_init();
209 	hikey960_regulator_enable();
210 	hikey960_tzc_init();
211 	hikey960_peri_init();
212 	hikey960_ufs_init();
213 	hikey960_pinmux_init();
214 	hikey960_io_setup();
215 }
216 
217 /*
218  * The following function checks if Firmware update is needed,
219  * by checking if TOC in FIP image is valid or not.
220  */
221 unsigned int bl1_plat_get_next_image_id(void)
222 {
223 	unsigned int mode, ret;
224 
225 	mode = mmio_read_32(SCTRL_BAK_DATA0_REG);
226 	switch (mode & BOOT_MODE_MASK) {
227 	case BOOT_MODE_RECOVERY:
228 		ret = NS_BL1U_IMAGE_ID;
229 		break;
230 	default:
231 		WARN("Invalid boot mode is found:%d\n", mode);
232 		panic();
233 	}
234 	return ret;
235 }
236 
237 image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
238 {
239 	unsigned int index = 0;
240 
241 	while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
242 		if (bl1_tbbr_image_descs[index].image_id == image_id)
243 			return &bl1_tbbr_image_descs[index];
244 		index++;
245 	}
246 
247 	return NULL;
248 }
249 
250 void bl1_plat_set_ep_info(unsigned int image_id,
251 		entry_point_info_t *ep_info)
252 {
253 	unsigned int data = 0;
254 	uintptr_t tmp = HIKEY960_NS_TMP_OFFSET;
255 
256 	if (image_id != NS_BL1U_IMAGE_ID)
257 		panic();
258 	/* Copy NS BL1U from 0x1AC1_8000 to 0x1AC9_8000 */
259 	memcpy((void *)tmp, (void *)HIKEY960_NS_IMAGE_OFFSET,
260 		NS_BL1U_SIZE);
261 	memcpy((void *)NS_BL1U_BASE, (void *)tmp, NS_BL1U_SIZE);
262 	inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
263 	/* Initialize the GIC driver, cpu and distributor interfaces */
264 	gicv2_driver_init(&hikey960_gic_data);
265 	gicv2_distif_init();
266 	gicv2_pcpu_distif_init();
267 	gicv2_cpuif_enable();
268 	/* CNTFRQ is read-only in EL1 */
269 	write_cntfrq_el0(plat_get_syscnt_freq2());
270 	data = read_cpacr_el1();
271 	do {
272 		data |= 3 << 20;
273 		write_cpacr_el1(data);
274 		data = read_cpacr_el1();
275 	} while ((data & (3 << 20)) != (3 << 20));
276 	INFO("cpacr_el1:0x%x\n", data);
277 
278 	ep_info->args.arg0 = 0xffff & read_mpidr();
279 	ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
280 				DISABLE_ALL_EXCEPTIONS);
281 }
282