xref: /rk3399_ARM-atf/plat/hisilicon/hikey960/hikey960_bl1_setup.c (revision 085e80ec111b2ab3607f0f38f6ef0062922bc196)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <arm_gic.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <console.h>
12 #include <debug.h>
13 #include <delay_timer.h>
14 #include <dw_ufs.h>
15 #include <errno.h>
16 #include <generic_delay_timer.h>
17 #include <gicv2.h>
18 #include <hi3660.h>
19 #include <mmio.h>
20 #include <platform.h>
21 #include <platform_def.h>
22 #include <string.h>
23 #include <tbbr/tbbr_img_desc.h>
24 #include <ufs.h>
25 
26 #include "../../bl1/bl1_private.h"
27 #include "hikey960_def.h"
28 #include "hikey960_private.h"
29 
30 enum {
31 	BOOT_MODE_RECOVERY = 0,
32 	BOOT_MODE_NORMAL,
33 	BOOT_MODE_MASK = 1,
34 };
35 
36 /*
37  * Declarations of linker defined symbols which will help us find the layout
38  * of trusted RAM
39  */
40 extern unsigned long __COHERENT_RAM_START__;
41 extern unsigned long __COHERENT_RAM_END__;
42 
43 /*
44  * The next 2 constants identify the extents of the coherent memory region.
45  * These addresses are used by the MMU setup code and therefore they must be
46  * page-aligned.  It is the responsibility of the linker script to ensure that
47  * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
48  * page-aligned addresses.
49  */
50 #define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
51 #define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
52 
53 /* Data structure which holds the extents of the trusted RAM for BL1 */
54 static meminfo_t bl1_tzram_layout;
55 
56 /******************************************************************************
57  * On a GICv2 system, the Group 1 secure interrupts are treated as Group 0
58  * interrupts.
59  *****************************************************************************/
60 const unsigned int g0_interrupt_array[] = {
61 	IRQ_SEC_PHY_TIMER,
62 	IRQ_SEC_SGI_0
63 };
64 
65 const gicv2_driver_data_t hikey960_gic_data = {
66 	.gicd_base = GICD_REG_BASE,
67 	.gicc_base = GICC_REG_BASE,
68 	.g0_interrupt_num = ARRAY_SIZE(g0_interrupt_array),
69 	.g0_interrupt_array = g0_interrupt_array,
70 };
71 
72 meminfo_t *bl1_plat_sec_mem_layout(void)
73 {
74 	return &bl1_tzram_layout;
75 }
76 
77 /*******************************************************************************
78  * Function that takes a memory layout into which BL2 has been loaded and
79  * populates a new memory layout for BL2 that ensures that BL1's data sections
80  * resident in secure RAM are not visible to BL2.
81  ******************************************************************************/
82 void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
83 			     meminfo_t *bl2_mem_layout)
84 {
85 
86 	assert(bl1_mem_layout != NULL);
87 	assert(bl2_mem_layout != NULL);
88 
89 	/*
90 	 * Cannot remove BL1 RW data from the scope of memory visible to BL2
91 	 * like arm platforms because they overlap in hikey960
92 	 */
93 	bl2_mem_layout->total_base = BL2_BASE;
94 	bl2_mem_layout->total_size = NS_BL1U_LIMIT - BL2_BASE;
95 
96 	flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
97 }
98 
99 /*
100  * Perform any BL1 specific platform actions.
101  */
102 void bl1_early_platform_setup(void)
103 {
104 	unsigned int id, uart_base;
105 
106 	generic_delay_timer_init();
107 	hikey960_read_boardid(&id);
108 	if (id == 5300)
109 		uart_base = PL011_UART5_BASE;
110 	else
111 		uart_base = PL011_UART6_BASE;
112 	/* Initialize the console to provide early debug support */
113 	console_init(uart_base, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
114 
115 	/* Allow BL1 to see the whole Trusted RAM */
116 	bl1_tzram_layout.total_base = BL1_RW_BASE;
117 	bl1_tzram_layout.total_size = BL1_RW_SIZE;
118 
119 	INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
120 	     BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */
121 }
122 
123 /*
124  * Perform the very early platform specific architecture setup here. At the
125  * moment this only does basic initialization. Later architectural setup
126  * (bl1_arch_setup()) does not do anything platform specific.
127  */
128 void bl1_plat_arch_setup(void)
129 {
130 	hikey960_init_mmu_el3(bl1_tzram_layout.total_base,
131 			      bl1_tzram_layout.total_size,
132 			      BL1_RO_BASE,
133 			      BL1_RO_LIMIT,
134 			      BL1_COHERENT_RAM_BASE,
135 			      BL1_COHERENT_RAM_LIMIT);
136 }
137 
138 static void hikey960_ufs_reset(void)
139 {
140 	unsigned int data, mask;
141 
142 	mmio_write_32(CRG_PERDIS7_REG, 1 << 14);
143 	mmio_clrbits_32(UFS_SYS_PHY_CLK_CTRL_REG, BIT_SYSCTRL_REF_CLOCK_EN);
144 	do {
145 		data = mmio_read_32(UFS_SYS_PHY_CLK_CTRL_REG);
146 	} while (data & BIT_SYSCTRL_REF_CLOCK_EN);
147 	/* use abb clk */
148 	mmio_clrbits_32(UFS_SYS_UFS_SYSCTRL_REG, BIT_UFS_REFCLK_SRC_SE1);
149 	mmio_clrbits_32(UFS_SYS_PHY_ISO_EN_REG, BIT_UFS_REFCLK_ISO_EN);
150 	mmio_write_32(PCTRL_PERI_CTRL3_REG, (1 << 0) | (1 << 16));
151 	mdelay(1);
152 	mmio_write_32(CRG_PEREN7_REG, 1 << 14);
153 	mmio_setbits_32(UFS_SYS_PHY_CLK_CTRL_REG, BIT_SYSCTRL_REF_CLOCK_EN);
154 
155 	mmio_write_32(CRG_PERRSTEN3_REG, PERI_UFS_BIT);
156 	do {
157 		data = mmio_read_32(CRG_PERRSTSTAT3_REG);
158 	} while ((data & PERI_UFS_BIT) == 0);
159 	mmio_setbits_32(UFS_SYS_PSW_POWER_CTRL_REG, BIT_UFS_PSW_MTCMOS_EN);
160 	mdelay(1);
161 	mmio_setbits_32(UFS_SYS_HC_LP_CTRL_REG, BIT_SYSCTRL_PWR_READY);
162 	mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG,
163 		      MASK_UFS_DEVICE_RESET);
164 	/* clear SC_DIV_UFS_PERIBUS */
165 	mask = SC_DIV_UFS_PERIBUS << 16;
166 	mmio_write_32(CRG_CLKDIV17_REG, mask);
167 	/* set SC_DIV_UFSPHY_CFG(3) */
168 	mask = SC_DIV_UFSPHY_CFG_MASK << 16;
169 	data = SC_DIV_UFSPHY_CFG(3);
170 	mmio_write_32(CRG_CLKDIV16_REG, mask | data);
171 	data = mmio_read_32(UFS_SYS_PHY_CLK_CTRL_REG);
172 	data &= ~MASK_SYSCTRL_CFG_CLOCK_FREQ;
173 	data |= 0x39;
174 	mmio_write_32(UFS_SYS_PHY_CLK_CTRL_REG, data);
175 	mmio_clrbits_32(UFS_SYS_PHY_CLK_CTRL_REG, MASK_SYSCTRL_REF_CLOCK_SEL);
176 	mmio_setbits_32(UFS_SYS_CLOCK_GATE_BYPASS_REG,
177 			MASK_UFS_CLK_GATE_BYPASS);
178 	mmio_setbits_32(UFS_SYS_UFS_SYSCTRL_REG, MASK_UFS_SYSCTRL_BYPASS);
179 
180 	mmio_setbits_32(UFS_SYS_PSW_CLK_CTRL_REG, BIT_SYSCTRL_PSW_CLK_EN);
181 	mmio_clrbits_32(UFS_SYS_PSW_POWER_CTRL_REG, BIT_UFS_PSW_ISO_CTRL);
182 	mmio_clrbits_32(UFS_SYS_PHY_ISO_EN_REG, BIT_UFS_PHY_ISO_CTRL);
183 	mmio_clrbits_32(UFS_SYS_HC_LP_CTRL_REG, BIT_SYSCTRL_LP_ISOL_EN);
184 	mmio_write_32(CRG_PERRSTDIS3_REG, PERI_ARST_UFS_BIT);
185 	mmio_setbits_32(UFS_SYS_RESET_CTRL_EN_REG, BIT_SYSCTRL_LP_RESET_N);
186 	mdelay(1);
187 	mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG,
188 		      MASK_UFS_DEVICE_RESET | BIT_UFS_DEVICE_RESET);
189 	mdelay(20);
190 	mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG,
191 		      0x03300330);
192 
193 	mmio_write_32(CRG_PERRSTDIS3_REG, PERI_UFS_BIT);
194 	do {
195 		data = mmio_read_32(CRG_PERRSTSTAT3_REG);
196 	} while (data & PERI_UFS_BIT);
197 }
198 
199 static void hikey960_ufs_init(void)
200 {
201 	dw_ufs_params_t ufs_params;
202 
203 	memset(&ufs_params, 0, sizeof(ufs_params));
204 	ufs_params.reg_base = UFS_REG_BASE;
205 	ufs_params.desc_base = HIKEY960_UFS_DESC_BASE;
206 	ufs_params.desc_size = HIKEY960_UFS_DESC_SIZE;
207 
208 	if ((ufs_params.flags & UFS_FLAGS_SKIPINIT) == 0)
209 		hikey960_ufs_reset();
210 	dw_ufs_init(&ufs_params);
211 }
212 
213 /*
214  * Function which will perform any remaining platform-specific setup that can
215  * occur after the MMU and data cache have been enabled.
216  */
217 void bl1_platform_setup(void)
218 {
219 	hikey960_clk_init();
220 	hikey960_pmu_init();
221 	hikey960_regulator_enable();
222 	hikey960_tzc_init();
223 	hikey960_peri_init();
224 	hikey960_ufs_init();
225 	hikey960_pinmux_init();
226 	hikey960_io_setup();
227 }
228 
229 /*
230  * The following function checks if Firmware update is needed,
231  * by checking if TOC in FIP image is valid or not.
232  */
233 unsigned int bl1_plat_get_next_image_id(void)
234 {
235 	unsigned int mode, ret;
236 
237 	mode = mmio_read_32(SCTRL_BAK_DATA0_REG);
238 	switch (mode & BOOT_MODE_MASK) {
239 	case BOOT_MODE_RECOVERY:
240 		ret = NS_BL1U_IMAGE_ID;
241 		break;
242 	default:
243 		WARN("Invalid boot mode is found:%d\n", mode);
244 		panic();
245 	}
246 	return ret;
247 }
248 
249 image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
250 {
251 	unsigned int index = 0;
252 
253 	while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
254 		if (bl1_tbbr_image_descs[index].image_id == image_id)
255 			return &bl1_tbbr_image_descs[index];
256 		index++;
257 	}
258 
259 	return NULL;
260 }
261 
262 void bl1_plat_set_ep_info(unsigned int image_id,
263 		entry_point_info_t *ep_info)
264 {
265 	unsigned int data = 0;
266 	uintptr_t tmp = HIKEY960_NS_TMP_OFFSET;
267 
268 	if (image_id != NS_BL1U_IMAGE_ID)
269 		panic();
270 	/* Copy NS BL1U from 0x1AC1_8000 to 0x1AC9_8000 */
271 	memcpy((void *)tmp, (void *)HIKEY960_NS_IMAGE_OFFSET,
272 		NS_BL1U_SIZE);
273 	memcpy((void *)NS_BL1U_BASE, (void *)tmp, NS_BL1U_SIZE);
274 	inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
275 	/* Initialize the GIC driver, cpu and distributor interfaces */
276 	gicv2_driver_init(&hikey960_gic_data);
277 	gicv2_distif_init();
278 	gicv2_pcpu_distif_init();
279 	gicv2_cpuif_enable();
280 	/* CNTFRQ is read-only in EL1 */
281 	write_cntfrq_el0(plat_get_syscnt_freq2());
282 	data = read_cpacr_el1();
283 	do {
284 		data |= 3 << 20;
285 		write_cpacr_el1(data);
286 		data = read_cpacr_el1();
287 	} while ((data & (3 << 20)) != (3 << 20));
288 	INFO("cpacr_el1:0x%x\n", data);
289 
290 	ep_info->args.arg0 = 0xffff & read_mpidr();
291 	ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
292 				DISABLE_ALL_EXCEPTIONS);
293 }
294