xref: /rk3399_ARM-atf/plat/hisilicon/hikey/hikey_bl1_setup.c (revision a628b1ab2aa8fa7ca9ffe4e05d714c50e8d83792)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <assert.h>
9 #include <bl_common.h>
10 #include <console.h>
11 #include <debug.h>
12 #include <dw_mmc.h>
13 #include <emmc.h>
14 #include <errno.h>
15 #include <gpio.h>
16 #include <hi6220.h>
17 #include <hi6553.h>
18 #include <mmio.h>
19 #include <pl061_gpio.h>
20 #include <platform.h>
21 #include <platform_def.h>
22 #include <sp804_delay_timer.h>
23 #include <string.h>
24 #include <tbbr/tbbr_img_desc.h>
25 
26 #include "../../bl1/bl1_private.h"
27 #include "hikey_def.h"
28 #include "hikey_private.h"
29 
30 /*
31  * Declarations of linker defined symbols which will help us find the layout
32  * of trusted RAM
33  */
34 extern unsigned long __COHERENT_RAM_START__;
35 extern unsigned long __COHERENT_RAM_END__;
36 
37 /*
38  * The next 2 constants identify the extents of the coherent memory region.
39  * These addresses are used by the MMU setup code and therefore they must be
40  * page-aligned.  It is the responsibility of the linker script to ensure that
41  * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
42  * page-aligned addresses.
43  */
44 #define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
45 #define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
46 
47 /* Data structure which holds the extents of the trusted RAM for BL1 */
48 static meminfo_t bl1_tzram_layout;
49 
50 enum {
51 	BOOT_NORMAL = 0,
52 	BOOT_USB_DOWNLOAD,
53 	BOOT_UART_DOWNLOAD,
54 };
55 
56 meminfo_t *bl1_plat_sec_mem_layout(void)
57 {
58 	return &bl1_tzram_layout;
59 }
60 
61 /*******************************************************************************
62  * Function that takes a memory layout into which BL2 has been loaded and
63  * populates a new memory layout for BL2 that ensures that BL1's data sections
64  * resident in secure RAM are not visible to BL2.
65  ******************************************************************************/
66 void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
67 			     meminfo_t *bl2_mem_layout)
68 {
69 
70 	assert(bl1_mem_layout != NULL);
71 	assert(bl2_mem_layout != NULL);
72 
73 	/*
74 	 * Cannot remove BL1 RW data from the scope of memory visible to BL2
75 	 * like arm platforms because they overlap in hikey
76 	 */
77 	bl2_mem_layout->total_base = BL2_BASE;
78 	bl2_mem_layout->total_size = BL32_SRAM_LIMIT - BL2_BASE;
79 
80 	flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
81 }
82 
83 /*
84  * Perform any BL1 specific platform actions.
85  */
86 void bl1_early_platform_setup(void)
87 {
88 	/* Initialize the console to provide early debug support */
89 	console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
90 
91 	/* Allow BL1 to see the whole Trusted RAM */
92 	bl1_tzram_layout.total_base = BL1_RW_BASE;
93 	bl1_tzram_layout.total_size = BL1_RW_SIZE;
94 
95 	INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
96 	     BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */
97 }
98 
99 /*
100  * Perform the very early platform specific architecture setup here. At the
101  * moment this only does basic initialization. Later architectural setup
102  * (bl1_arch_setup()) does not do anything platform specific.
103  */
104 void bl1_plat_arch_setup(void)
105 {
106 	hikey_init_mmu_el3(bl1_tzram_layout.total_base,
107 			   bl1_tzram_layout.total_size,
108 			   BL1_RO_BASE,
109 			   BL1_RO_LIMIT,
110 			   BL1_COHERENT_RAM_BASE,
111 			   BL1_COHERENT_RAM_LIMIT);
112 }
113 
114 static void hikey_sp804_init(void)
115 {
116 	uint32_t data;
117 
118 	/* select the clock of dual timer0 */
119 	data = mmio_read_32(AO_SC_TIMER_EN0);
120 	while (data & 3) {
121 		data &= ~3;
122 		data |= 3 << 16;
123 		mmio_write_32(AO_SC_TIMER_EN0, data);
124 		data = mmio_read_32(AO_SC_TIMER_EN0);
125 	}
126 	/* enable the pclk of dual timer0 */
127 	data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
128 	while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0)) {
129 		mmio_write_32(AO_SC_PERIPH_CLKEN4, PCLK_TIMER1 | PCLK_TIMER0);
130 		data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
131 	}
132 	/* reset dual timer0 */
133 	data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
134 	mmio_write_32(AO_SC_PERIPH_RSTEN4, PCLK_TIMER1 | PCLK_TIMER0);
135 	do {
136 		data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
137 	} while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0));
138 	/* unreset dual timer0 */
139 	mmio_write_32(AO_SC_PERIPH_RSTDIS4, PCLK_TIMER1 | PCLK_TIMER0);
140 	do {
141 		data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
142 	} while ((data & PCLK_TIMER1) || (data & PCLK_TIMER0));
143 
144 	sp804_timer_init(SP804_TIMER0_BASE, 10, 192);
145 }
146 
147 static void hikey_gpio_init(void)
148 {
149 	pl061_gpio_init();
150 	pl061_gpio_register(GPIO0_BASE, 0);
151 	pl061_gpio_register(GPIO1_BASE, 1);
152 	pl061_gpio_register(GPIO2_BASE, 2);
153 	pl061_gpio_register(GPIO3_BASE, 3);
154 	pl061_gpio_register(GPIO4_BASE, 4);
155 	pl061_gpio_register(GPIO5_BASE, 5);
156 	pl061_gpio_register(GPIO6_BASE, 6);
157 	pl061_gpio_register(GPIO7_BASE, 7);
158 	pl061_gpio_register(GPIO8_BASE, 8);
159 	pl061_gpio_register(GPIO9_BASE, 9);
160 	pl061_gpio_register(GPIO10_BASE, 10);
161 	pl061_gpio_register(GPIO11_BASE, 11);
162 	pl061_gpio_register(GPIO12_BASE, 12);
163 	pl061_gpio_register(GPIO13_BASE, 13);
164 	pl061_gpio_register(GPIO14_BASE, 14);
165 	pl061_gpio_register(GPIO15_BASE, 15);
166 	pl061_gpio_register(GPIO16_BASE, 16);
167 	pl061_gpio_register(GPIO17_BASE, 17);
168 	pl061_gpio_register(GPIO18_BASE, 18);
169 	pl061_gpio_register(GPIO19_BASE, 19);
170 
171 	/* Power on indicator LED (USER_LED1). */
172 	gpio_set_direction(32, GPIO_DIR_OUT);	/* LED1 */
173 	gpio_set_value(32, GPIO_LEVEL_HIGH);
174 	gpio_set_direction(33, GPIO_DIR_OUT);	/* LED2 */
175 	gpio_set_value(33, GPIO_LEVEL_LOW);
176 	gpio_set_direction(34, GPIO_DIR_OUT);	/* LED3 */
177 	gpio_set_direction(35, GPIO_DIR_OUT);	/* LED4 */
178 }
179 
180 static void hikey_pmussi_init(void)
181 {
182 	uint32_t data;
183 
184 	/* Initialize PWR_HOLD GPIO */
185 	gpio_set_direction(0, GPIO_DIR_OUT);
186 	gpio_set_value(0, GPIO_LEVEL_LOW);
187 
188 	/*
189 	 * After reset, PMUSSI stays in reset mode.
190 	 * Now make it out of reset.
191 	 */
192 	mmio_write_32(AO_SC_PERIPH_RSTDIS4,
193 		      AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);
194 	do {
195 		data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
196 	} while (data & AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);
197 
198 	/* Set PMUSSI clock latency for read operation. */
199 	data = mmio_read_32(AO_SC_MCU_SUBSYS_CTRL3);
200 	data &= ~AO_SC_MCU_SUBSYS_CTRL3_RCLK_MASK;
201 	data |= AO_SC_MCU_SUBSYS_CTRL3_RCLK_3;
202 	mmio_write_32(AO_SC_MCU_SUBSYS_CTRL3, data);
203 
204 	/* enable PMUSSI clock */
205 	data = AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_CCPU |
206 	       AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_MCU;
207 	mmio_write_32(AO_SC_PERIPH_CLKEN5, data);
208 	data = AO_SC_PERIPH_CLKEN4_PCLK_PMUSSI;
209 	mmio_write_32(AO_SC_PERIPH_CLKEN4, data);
210 
211 	gpio_set_value(0, GPIO_LEVEL_HIGH);
212 }
213 
214 static void hikey_hi6553_init(void)
215 {
216 	uint8_t data;
217 
218 	mmio_write_8(HI6553_PERI_EN_MARK, 0x1e);
219 	mmio_write_8(HI6553_NP_REG_ADJ1, 0);
220 	data = DISABLE6_XO_CLK_CONN | DISABLE6_XO_CLK_NFC |
221 		DISABLE6_XO_CLK_RF1 | DISABLE6_XO_CLK_RF2;
222 	mmio_write_8(HI6553_DISABLE6_XO_CLK, data);
223 
224 	/* configure BUCK0 & BUCK1 */
225 	mmio_write_8(HI6553_BUCK01_CTRL2, 0x5e);
226 	mmio_write_8(HI6553_BUCK0_CTRL7, 0x10);
227 	mmio_write_8(HI6553_BUCK1_CTRL7, 0x10);
228 	mmio_write_8(HI6553_BUCK0_CTRL5, 0x1e);
229 	mmio_write_8(HI6553_BUCK1_CTRL5, 0x1e);
230 	mmio_write_8(HI6553_BUCK0_CTRL1, 0xfc);
231 	mmio_write_8(HI6553_BUCK1_CTRL1, 0xfc);
232 
233 	/* configure BUCK2 */
234 	mmio_write_8(HI6553_BUCK2_REG1, 0x4f);
235 	mmio_write_8(HI6553_BUCK2_REG5, 0x99);
236 	mmio_write_8(HI6553_BUCK2_REG6, 0x45);
237 	mdelay(1);
238 	mmio_write_8(HI6553_VSET_BUCK2_ADJ, 0x22);
239 	mdelay(1);
240 
241 	/* configure BUCK3 */
242 	mmio_write_8(HI6553_BUCK3_REG3, 0x02);
243 	mmio_write_8(HI6553_BUCK3_REG5, 0x99);
244 	mmio_write_8(HI6553_BUCK3_REG6, 0x41);
245 	mmio_write_8(HI6553_VSET_BUCK3_ADJ, 0x02);
246 	mdelay(1);
247 
248 	/* configure BUCK4 */
249 	mmio_write_8(HI6553_BUCK4_REG2, 0x9a);
250 	mmio_write_8(HI6553_BUCK4_REG5, 0x99);
251 	mmio_write_8(HI6553_BUCK4_REG6, 0x45);
252 
253 	/* configure LDO20 */
254 	mmio_write_8(HI6553_LDO20_REG_ADJ, 0x50);
255 
256 	mmio_write_8(HI6553_NP_REG_CHG, 0x0f);
257 	mmio_write_8(HI6553_CLK_TOP0, 0x06);
258 	mmio_write_8(HI6553_CLK_TOP3, 0xc0);
259 	mmio_write_8(HI6553_CLK_TOP4, 0x00);
260 
261 	/* configure LDO7 & LDO10 for SD slot */
262 	/* enable LDO7 */
263 	data = mmio_read_8(HI6553_LDO7_REG_ADJ);
264 	data = (data & 0xf8) | 0x2;
265 	mmio_write_8(HI6553_LDO7_REG_ADJ, data);
266 	mdelay(5);
267 	mmio_write_8(HI6553_ENABLE2_LDO1_8, 1 << 6);
268 	mdelay(5);
269 	/* enable LDO10 */
270 	data = mmio_read_8(HI6553_LDO10_REG_ADJ);
271 	data = (data & 0xf8) | 0x5;
272 	mmio_write_8(HI6553_LDO10_REG_ADJ, data);
273 	mdelay(5);
274 	mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 1);
275 	mdelay(5);
276 	/* enable LDO15 */
277 	data = mmio_read_8(HI6553_LDO15_REG_ADJ);
278 	data = (data & 0xf8) | 0x4;
279 	mmio_write_8(HI6553_LDO15_REG_ADJ, data);
280 	mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 6);
281 	mdelay(5);
282 	/* enable LDO19 */
283 	data = mmio_read_8(HI6553_LDO19_REG_ADJ);
284 	data |= 0x7;
285 	mmio_write_8(HI6553_LDO19_REG_ADJ, data);
286 	mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 2);
287 	mdelay(5);
288 	/* enable LDO21 */
289 	data = mmio_read_8(HI6553_LDO21_REG_ADJ);
290 	data = (data & 0xf8) | 0x3;
291 	mmio_write_8(HI6553_LDO21_REG_ADJ, data);
292 	mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 4);
293 	mdelay(5);
294 	/* enable LDO22 */
295 	data = mmio_read_8(HI6553_LDO22_REG_ADJ);
296 	data = (data & 0xf8) | 0x7;
297 	mmio_write_8(HI6553_LDO22_REG_ADJ, data);
298 	mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 5);
299 	mdelay(5);
300 
301 	/* select 32.764KHz */
302 	mmio_write_8(HI6553_CLK19M2_600_586_EN, 0x01);
303 
304 	/* Disable vbus_det interrupts */
305 	data = mmio_read_8(HI6553_IRQ2_MASK);
306 	data = data | 0x3;
307 	mmio_write_8(HI6553_IRQ2_MASK, data);
308 }
309 
310 static void init_mmc0_pll(void)
311 {
312 	unsigned int data;
313 
314 	/* select SYSPLL as the source of MMC0 */
315 	/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
316 	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 5 | 1 << 21);
317 	do {
318 		data = mmio_read_32(PERI_SC_CLK_SEL0);
319 	} while (!(data & (1 << 5)));
320 	/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
321 	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 29);
322 	do {
323 		data = mmio_read_32(PERI_SC_CLK_SEL0);
324 	} while (data & (1 << 13));
325 
326 	mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 0));
327 	do {
328 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
329 	} while (!(data & (1 << 0)));
330 
331 	data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
332 	data |= 1 << 1;
333 	mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
334 
335 	do {
336 		mmio_write_32(PERI_SC_CLKCFG8BIT1, (1 << 7) | 0xb);
337 		data = mmio_read_32(PERI_SC_CLKCFG8BIT1);
338 	} while ((data & 0xb) != 0xb);
339 }
340 
341 static void reset_mmc0_clk(void)
342 {
343 	unsigned int data;
344 
345 	/* disable mmc0 bus clock */
346 	mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC0);
347 	do {
348 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
349 	} while (data & PERI_CLK0_MMC0);
350 	/* enable mmc0 bus clock */
351 	mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC0);
352 	do {
353 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
354 	} while (!(data & PERI_CLK0_MMC0));
355 	/* reset mmc0 clock domain */
356 	mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC0);
357 
358 	/* bypass mmc0 clock phase */
359 	data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
360 	data |= 3;
361 	mmio_write_32(PERI_SC_PERIPH_CTRL2, data);
362 
363 	/* disable low power */
364 	data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
365 	data |= 1 << 3;
366 	mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
367 	do {
368 		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
369 	} while (!(data & PERI_RST0_MMC0));
370 
371 	/* unreset mmc0 clock domain */
372 	mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC0);
373 	do {
374 		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
375 	} while (data & PERI_RST0_MMC0);
376 }
377 
378 static void init_media_clk(void)
379 {
380 	unsigned int data, value;
381 
382 	data = mmio_read_32(PMCTRL_MEDPLLCTRL);
383 	data |= 1;
384 	mmio_write_32(PMCTRL_MEDPLLCTRL, data);
385 
386 	for (;;) {
387 		data = mmio_read_32(PMCTRL_MEDPLLCTRL);
388 		value = 1 << 28;
389 		if ((data & value) == value)
390 			break;
391 	}
392 
393 	data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
394 	data = 1 << 10;
395 	mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
396 }
397 
398 static void init_mmc1_pll(void)
399 {
400 	uint32_t data;
401 
402 	/* select SYSPLL as the source of MMC1 */
403 	/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
404 	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 11 | 1 << 27);
405 	do {
406 		data = mmio_read_32(PERI_SC_CLK_SEL0);
407 	} while (!(data & (1 << 11)));
408 	/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
409 	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 30);
410 	do {
411 		data = mmio_read_32(PERI_SC_CLK_SEL0);
412 	} while (data & (1 << 14));
413 
414 	mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 1));
415 	do {
416 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
417 	} while (!(data & (1 << 1)));
418 
419 	data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
420 	data |= 1 << 2;
421 	mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
422 
423 	do {
424 		/* 1.2GHz / 50 = 24MHz */
425 		mmio_write_32(PERI_SC_CLKCFG8BIT2, 0x31 | (1 << 7));
426 		data = mmio_read_32(PERI_SC_CLKCFG8BIT2);
427 	} while ((data & 0x31) != 0x31);
428 }
429 
430 static void reset_mmc1_clk(void)
431 {
432 	unsigned int data;
433 
434 	/* disable mmc1 bus clock */
435 	mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC1);
436 	do {
437 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
438 	} while (data & PERI_CLK0_MMC1);
439 	/* enable mmc1 bus clock */
440 	mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC1);
441 	do {
442 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
443 	} while (!(data & PERI_CLK0_MMC1));
444 	/* reset mmc1 clock domain */
445 	mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC1);
446 
447 	/* bypass mmc1 clock phase */
448 	data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
449 	data |= 3 << 2;
450 	mmio_write_32(PERI_SC_PERIPH_CTRL2, data);
451 
452 	/* disable low power */
453 	data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
454 	data |= 1 << 4;
455 	mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
456 	do {
457 		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
458 	} while (!(data & PERI_RST0_MMC1));
459 
460 	/* unreset mmc0 clock domain */
461 	mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC1);
462 	do {
463 		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
464 	} while (data & PERI_RST0_MMC1);
465 }
466 
467 /* Initialize PLL of both eMMC and SD controllers. */
468 static void hikey_mmc_pll_init(void)
469 {
470 	init_mmc0_pll();
471 	reset_mmc0_clk();
472 	init_media_clk();
473 
474 	dsb();
475 
476 	init_mmc1_pll();
477 	reset_mmc1_clk();
478 }
479 
480 static void hikey_rtc_init(void)
481 {
482 	uint32_t data;
483 
484 	data = mmio_read_32(AO_SC_PERIPH_CLKEN4);
485 	data |= AO_SC_PERIPH_RSTDIS4_RESET_RTC0_N;
486 	mmio_write_32(AO_SC_PERIPH_CLKEN4, data);
487 }
488 
489 /*
490  * Function which will perform any remaining platform-specific setup that can
491  * occur after the MMU and data cache have been enabled.
492  */
493 void bl1_platform_setup(void)
494 {
495 	dw_mmc_params_t params;
496 
497 	assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) &&
498 	       ((SRAM_BASE + SRAM_SIZE) >=
499 		(HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE)));
500 	hikey_sp804_init();
501 	hikey_gpio_init();
502 	hikey_pmussi_init();
503 	hikey_hi6553_init();
504 
505 	hikey_rtc_init();
506 
507 	hikey_mmc_pll_init();
508 
509 	memset(&params, 0, sizeof(dw_mmc_params_t));
510 	params.reg_base = DWMMC0_BASE;
511 	params.desc_base = HIKEY_BL1_MMC_DESC_BASE;
512 	params.desc_size = 1 << 20;
513 	params.clk_rate = 24 * 1000 * 1000;
514 	params.bus_width = EMMC_BUS_WIDTH_8;
515 	params.flags = EMMC_FLAG_CMD23;
516 	dw_mmc_init(&params);
517 
518 	hikey_io_setup();
519 }
520 
521 /*
522  * The following function checks if Firmware update is needed,
523  * by checking if TOC in FIP image is valid or not.
524  */
525 unsigned int bl1_plat_get_next_image_id(void)
526 {
527 	int32_t boot_mode;
528 	unsigned int ret;
529 
530 	boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE);
531 	switch (boot_mode) {
532 	case BOOT_USB_DOWNLOAD:
533 	case BOOT_UART_DOWNLOAD:
534 		ret = NS_BL1U_IMAGE_ID;
535 		break;
536 	default:
537 		WARN("Invalid boot mode is found:%d\n", boot_mode);
538 		panic();
539 	}
540 	return ret;
541 }
542 
543 image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
544 {
545 	unsigned int index = 0;
546 
547 	while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
548 		if (bl1_tbbr_image_descs[index].image_id == image_id)
549 			return &bl1_tbbr_image_descs[index];
550 
551 		index++;
552 	}
553 
554 	return NULL;
555 }
556 
557 void bl1_plat_set_ep_info(unsigned int image_id,
558 		entry_point_info_t *ep_info)
559 {
560 	unsigned int data = 0;
561 
562 	if (image_id == BL2_IMAGE_ID)
563 		panic();
564 	inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
565 	__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
566 	do {
567 		data |= 3 << 20;
568 		__asm__ volatile ("msr	cpacr_el1, %0" : : "r"(data));
569 		__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
570 	} while ((data & (3 << 20)) != (3 << 20));
571 	INFO("cpacr_el1:0x%x\n", data);
572 
573 	ep_info->args.arg0 = 0xffff & read_mpidr();
574 	ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
575 				DISABLE_ALL_EXCEPTIONS);
576 }
577