xref: /rk3399_ARM-atf/plat/hisilicon/hikey/hikey_bl1_setup.c (revision 2271cb054db6387bbb9215e09ae97a41a13aa4e3)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <assert.h>
9 #include <bl_common.h>
10 #include <console.h>
11 #include <debug.h>
12 #include <dw_mmc.h>
13 #include <emmc.h>
14 #include <errno.h>
15 #include <hi6220.h>
16 #include <hikey_def.h>
17 #include <hikey_layout.h>
18 #include <mmio.h>
19 #include <platform.h>
20 #include <string.h>
21 #include <tbbr/tbbr_img_desc.h>
22 
23 #include "../../bl1/bl1_private.h"
24 #include "hikey_private.h"
25 
26 /*
27  * Declarations of linker defined symbols which will help us find the layout
28  * of trusted RAM
29  */
30 extern unsigned long __COHERENT_RAM_START__;
31 extern unsigned long __COHERENT_RAM_END__;
32 
33 /*
34  * The next 2 constants identify the extents of the coherent memory region.
35  * These addresses are used by the MMU setup code and therefore they must be
36  * page-aligned.  It is the responsibility of the linker script to ensure that
37  * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
38  * page-aligned addresses.
39  */
40 #define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
41 #define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
42 
43 /* Data structure which holds the extents of the trusted RAM for BL1 */
44 static meminfo_t bl1_tzram_layout;
45 
46 enum {
47 	BOOT_NORMAL = 0,
48 	BOOT_USB_DOWNLOAD,
49 	BOOT_UART_DOWNLOAD,
50 };
51 
52 meminfo_t *bl1_plat_sec_mem_layout(void)
53 {
54 	return &bl1_tzram_layout;
55 }
56 
57 /*******************************************************************************
58  * Function that takes a memory layout into which BL2 has been loaded and
59  * populates a new memory layout for BL2 that ensures that BL1's data sections
60  * resident in secure RAM are not visible to BL2.
61  ******************************************************************************/
62 void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
63 			     meminfo_t *bl2_mem_layout)
64 {
65 
66 	assert(bl1_mem_layout != NULL);
67 	assert(bl2_mem_layout != NULL);
68 
69 	/*
70 	 * Cannot remove BL1 RW data from the scope of memory visible to BL2
71 	 * like arm platforms because they overlap in hikey
72 	 */
73 	bl2_mem_layout->total_base = BL2_BASE;
74 	bl2_mem_layout->total_size = BL32_SRAM_LIMIT - BL2_BASE;
75 
76 	flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
77 }
78 
79 /*
80  * Perform any BL1 specific platform actions.
81  */
82 void bl1_early_platform_setup(void)
83 {
84 	/* Initialize the console to provide early debug support */
85 	console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
86 
87 	/* Allow BL1 to see the whole Trusted RAM */
88 	bl1_tzram_layout.total_base = BL1_RW_BASE;
89 	bl1_tzram_layout.total_size = BL1_RW_SIZE;
90 
91 	INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
92 	     BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */
93 }
94 
95 /*
96  * Perform the very early platform specific architecture setup here. At the
97  * moment this only does basic initialization. Later architectural setup
98  * (bl1_arch_setup()) does not do anything platform specific.
99  */
100 void bl1_plat_arch_setup(void)
101 {
102 	hikey_init_mmu_el3(bl1_tzram_layout.total_base,
103 			   bl1_tzram_layout.total_size,
104 			   BL1_RO_BASE,
105 			   BL1_RO_LIMIT,
106 			   BL1_COHERENT_RAM_BASE,
107 			   BL1_COHERENT_RAM_LIMIT);
108 }
109 
110 /*
111  * Function which will perform any remaining platform-specific setup that can
112  * occur after the MMU and data cache have been enabled.
113  */
114 void bl1_platform_setup(void)
115 {
116 	dw_mmc_params_t params;
117 
118 	assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) &&
119 	       ((SRAM_BASE + SRAM_SIZE) >=
120 		(HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE)));
121 	hikey_sp804_init();
122 	hikey_gpio_init();
123 	hikey_pmussi_init();
124 	hikey_hi6553_init();
125 
126 	hikey_rtc_init();
127 
128 	hikey_mmc_pll_init();
129 
130 	memset(&params, 0, sizeof(dw_mmc_params_t));
131 	params.reg_base = DWMMC0_BASE;
132 	params.desc_base = HIKEY_BL1_MMC_DESC_BASE;
133 	params.desc_size = 1 << 20;
134 	params.clk_rate = 24 * 1000 * 1000;
135 	params.bus_width = EMMC_BUS_WIDTH_8;
136 	params.flags = EMMC_FLAG_CMD23;
137 	dw_mmc_init(&params);
138 
139 	hikey_io_setup();
140 }
141 
142 /*
143  * The following function checks if Firmware update is needed,
144  * by checking if TOC in FIP image is valid or not.
145  */
146 unsigned int bl1_plat_get_next_image_id(void)
147 {
148 	int32_t boot_mode;
149 	unsigned int ret;
150 
151 	boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE);
152 	switch (boot_mode) {
153 	case BOOT_USB_DOWNLOAD:
154 	case BOOT_UART_DOWNLOAD:
155 		ret = NS_BL1U_IMAGE_ID;
156 		break;
157 	default:
158 		WARN("Invalid boot mode is found:%d\n", boot_mode);
159 		panic();
160 	}
161 	return ret;
162 }
163 
164 image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
165 {
166 	unsigned int index = 0;
167 
168 	while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
169 		if (bl1_tbbr_image_descs[index].image_id == image_id)
170 			return &bl1_tbbr_image_descs[index];
171 
172 		index++;
173 	}
174 
175 	return NULL;
176 }
177 
178 void bl1_plat_set_ep_info(unsigned int image_id,
179 		entry_point_info_t *ep_info)
180 {
181 	uint64_t data = 0;
182 
183 	if (image_id == BL2_IMAGE_ID)
184 		panic();
185 	inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
186 	__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
187 	do {
188 		data |= 3 << 20;
189 		__asm__ volatile ("msr	cpacr_el1, %0" : : "r"(data));
190 		__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
191 	} while ((data & (3 << 20)) != (3 << 20));
192 	INFO("cpacr_el1:0x%lx\n", data);
193 
194 	ep_info->args.arg0 = 0xffff & read_mpidr();
195 	ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
196 				DISABLE_ALL_EXCEPTIONS);
197 }
198