xref: /rk3399_ARM-atf/plat/hisilicon/hikey/hikey_bl1_setup.c (revision 091f39675a98ee9e22ed78f52e239880bedf8911)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <assert.h>
9 #include <bl_common.h>
10 #include <console.h>
11 #include <debug.h>
12 #include <dw_mmc.h>
13 #include <errno.h>
14 #include <hi6220.h>
15 #include <hikey_def.h>
16 #include <hikey_layout.h>
17 #include <mmc.h>
18 #include <mmio.h>
19 #include <platform.h>
20 #include <string.h>
21 #include <tbbr/tbbr_img_desc.h>
22 
23 #include "../../bl1/bl1_private.h"
24 #include "hikey_private.h"
25 
26 /* Data structure which holds the extents of the trusted RAM for BL1 */
27 static meminfo_t bl1_tzram_layout;
28 
29 enum {
30 	BOOT_NORMAL = 0,
31 	BOOT_USB_DOWNLOAD,
32 	BOOT_UART_DOWNLOAD,
33 };
34 
35 meminfo_t *bl1_plat_sec_mem_layout(void)
36 {
37 	return &bl1_tzram_layout;
38 }
39 
40 /*******************************************************************************
41  * Function that takes a memory layout into which BL2 has been loaded and
42  * populates a new memory layout for BL2 that ensures that BL1's data sections
43  * resident in secure RAM are not visible to BL2.
44  ******************************************************************************/
45 void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
46 			     meminfo_t *bl2_mem_layout)
47 {
48 
49 	assert(bl1_mem_layout != NULL);
50 	assert(bl2_mem_layout != NULL);
51 
52 	/*
53 	 * Cannot remove BL1 RW data from the scope of memory visible to BL2
54 	 * like arm platforms because they overlap in hikey
55 	 */
56 	bl2_mem_layout->total_base = BL2_BASE;
57 	bl2_mem_layout->total_size = BL32_SRAM_LIMIT - BL2_BASE;
58 
59 	flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
60 }
61 
62 /*
63  * Perform any BL1 specific platform actions.
64  */
65 void bl1_early_platform_setup(void)
66 {
67 	/* Initialize the console to provide early debug support */
68 	console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
69 
70 	/* Allow BL1 to see the whole Trusted RAM */
71 	bl1_tzram_layout.total_base = BL1_RW_BASE;
72 	bl1_tzram_layout.total_size = BL1_RW_SIZE;
73 
74 	INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
75 	     BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */
76 }
77 
78 /*
79  * Perform the very early platform specific architecture setup here. At the
80  * moment this only does basic initialization. Later architectural setup
81  * (bl1_arch_setup()) does not do anything platform specific.
82  */
83 void bl1_plat_arch_setup(void)
84 {
85 	hikey_init_mmu_el3(bl1_tzram_layout.total_base,
86 			   bl1_tzram_layout.total_size,
87 			   BL1_RO_BASE,
88 			   BL1_RO_LIMIT,
89 			   BL_COHERENT_RAM_BASE,
90 			   BL_COHERENT_RAM_END);
91 }
92 
93 /*
94  * Function which will perform any remaining platform-specific setup that can
95  * occur after the MMU and data cache have been enabled.
96  */
97 void bl1_platform_setup(void)
98 {
99 	dw_mmc_params_t params;
100 	struct mmc_device_info info;
101 
102 	assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) &&
103 	       ((SRAM_BASE + SRAM_SIZE) >=
104 		(HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE)));
105 	hikey_sp804_init();
106 	hikey_gpio_init();
107 	hikey_pmussi_init();
108 	hikey_hi6553_init();
109 
110 	hikey_rtc_init();
111 
112 	hikey_mmc_pll_init();
113 
114 	memset(&params, 0, sizeof(dw_mmc_params_t));
115 	params.reg_base = DWMMC0_BASE;
116 	params.desc_base = HIKEY_BL1_MMC_DESC_BASE;
117 	params.desc_size = 1 << 20;
118 	params.clk_rate = 24 * 1000 * 1000;
119 	params.bus_width = MMC_BUS_WIDTH_8;
120 	params.flags = MMC_FLAG_CMD23;
121 	info.mmc_dev_type = MMC_IS_EMMC;
122 	dw_mmc_init(&params, &info);
123 
124 	hikey_io_setup();
125 }
126 
127 /*
128  * The following function checks if Firmware update is needed,
129  * by checking if TOC in FIP image is valid or not.
130  */
131 unsigned int bl1_plat_get_next_image_id(void)
132 {
133 	int32_t boot_mode;
134 	unsigned int ret;
135 
136 	boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE);
137 	switch (boot_mode) {
138 	case BOOT_USB_DOWNLOAD:
139 	case BOOT_UART_DOWNLOAD:
140 		ret = NS_BL1U_IMAGE_ID;
141 		break;
142 	default:
143 		WARN("Invalid boot mode is found:%d\n", boot_mode);
144 		panic();
145 	}
146 	return ret;
147 }
148 
149 image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
150 {
151 	unsigned int index = 0;
152 
153 	while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
154 		if (bl1_tbbr_image_descs[index].image_id == image_id)
155 			return &bl1_tbbr_image_descs[index];
156 
157 		index++;
158 	}
159 
160 	return NULL;
161 }
162 
163 void bl1_plat_set_ep_info(unsigned int image_id,
164 		entry_point_info_t *ep_info)
165 {
166 	uint64_t data = 0;
167 
168 	if (image_id == BL2_IMAGE_ID)
169 		panic();
170 	inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
171 	__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
172 	do {
173 		data |= 3 << 20;
174 		__asm__ volatile ("msr	cpacr_el1, %0" : : "r"(data));
175 		__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
176 	} while ((data & (3 << 20)) != (3 << 20));
177 	INFO("cpacr_el1:0x%llx\n", data);
178 
179 	ep_info->args.arg0 = 0xffff & read_mpidr();
180 	ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
181 				DISABLE_ALL_EXCEPTIONS);
182 }
183