1 /* 2 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <arch_helpers.h> 8 #include <assert.h> 9 #include <bl_common.h> 10 #include <console.h> 11 #include <debug.h> 12 #include <dw_mmc.h> 13 #include <emmc.h> 14 #include <errno.h> 15 #include <hi6220.h> 16 #include <mmio.h> 17 #include <platform.h> 18 #include <platform_def.h> 19 #include <string.h> 20 #include <tbbr/tbbr_img_desc.h> 21 22 #include "../../bl1/bl1_private.h" 23 #include "hikey_def.h" 24 #include "hikey_private.h" 25 26 /* 27 * Declarations of linker defined symbols which will help us find the layout 28 * of trusted RAM 29 */ 30 extern unsigned long __COHERENT_RAM_START__; 31 extern unsigned long __COHERENT_RAM_END__; 32 33 /* 34 * The next 2 constants identify the extents of the coherent memory region. 35 * These addresses are used by the MMU setup code and therefore they must be 36 * page-aligned. It is the responsibility of the linker script to ensure that 37 * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to 38 * page-aligned addresses. 39 */ 40 #define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__) 41 #define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__) 42 43 /* Data structure which holds the extents of the trusted RAM for BL1 */ 44 static meminfo_t bl1_tzram_layout; 45 46 enum { 47 BOOT_NORMAL = 0, 48 BOOT_USB_DOWNLOAD, 49 BOOT_UART_DOWNLOAD, 50 }; 51 52 meminfo_t *bl1_plat_sec_mem_layout(void) 53 { 54 return &bl1_tzram_layout; 55 } 56 57 /******************************************************************************* 58 * Function that takes a memory layout into which BL2 has been loaded and 59 * populates a new memory layout for BL2 that ensures that BL1's data sections 60 * resident in secure RAM are not visible to BL2. 61 ******************************************************************************/ 62 void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout, 63 meminfo_t *bl2_mem_layout) 64 { 65 66 assert(bl1_mem_layout != NULL); 67 assert(bl2_mem_layout != NULL); 68 69 /* 70 * Cannot remove BL1 RW data from the scope of memory visible to BL2 71 * like arm platforms because they overlap in hikey 72 */ 73 bl2_mem_layout->total_base = BL2_BASE; 74 bl2_mem_layout->total_size = BL32_SRAM_LIMIT - BL2_BASE; 75 76 flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t)); 77 } 78 79 /* 80 * Perform any BL1 specific platform actions. 81 */ 82 void bl1_early_platform_setup(void) 83 { 84 /* Initialize the console to provide early debug support */ 85 console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE); 86 87 /* Allow BL1 to see the whole Trusted RAM */ 88 bl1_tzram_layout.total_base = BL1_RW_BASE; 89 bl1_tzram_layout.total_size = BL1_RW_SIZE; 90 91 INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT, 92 BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */ 93 } 94 95 /* 96 * Perform the very early platform specific architecture setup here. At the 97 * moment this only does basic initialization. Later architectural setup 98 * (bl1_arch_setup()) does not do anything platform specific. 99 */ 100 void bl1_plat_arch_setup(void) 101 { 102 hikey_init_mmu_el3(bl1_tzram_layout.total_base, 103 bl1_tzram_layout.total_size, 104 BL1_RO_BASE, 105 BL1_RO_LIMIT, 106 BL1_COHERENT_RAM_BASE, 107 BL1_COHERENT_RAM_LIMIT); 108 } 109 110 /* 111 * Function which will perform any remaining platform-specific setup that can 112 * occur after the MMU and data cache have been enabled. 113 */ 114 void bl1_platform_setup(void) 115 { 116 dw_mmc_params_t params; 117 118 assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) && 119 ((SRAM_BASE + SRAM_SIZE) >= 120 (HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE))); 121 hikey_sp804_init(); 122 hikey_gpio_init(); 123 hikey_pmussi_init(); 124 hikey_hi6553_init(); 125 126 hikey_rtc_init(); 127 128 hikey_mmc_pll_init(); 129 130 memset(¶ms, 0, sizeof(dw_mmc_params_t)); 131 params.reg_base = DWMMC0_BASE; 132 params.desc_base = HIKEY_BL1_MMC_DESC_BASE; 133 params.desc_size = 1 << 20; 134 params.clk_rate = 24 * 1000 * 1000; 135 params.bus_width = EMMC_BUS_WIDTH_8; 136 params.flags = EMMC_FLAG_CMD23; 137 dw_mmc_init(¶ms); 138 139 hikey_io_setup(); 140 } 141 142 /* 143 * The following function checks if Firmware update is needed, 144 * by checking if TOC in FIP image is valid or not. 145 */ 146 unsigned int bl1_plat_get_next_image_id(void) 147 { 148 int32_t boot_mode; 149 unsigned int ret; 150 151 boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE); 152 switch (boot_mode) { 153 case BOOT_USB_DOWNLOAD: 154 case BOOT_UART_DOWNLOAD: 155 ret = NS_BL1U_IMAGE_ID; 156 break; 157 default: 158 WARN("Invalid boot mode is found:%d\n", boot_mode); 159 panic(); 160 } 161 return ret; 162 } 163 164 image_desc_t *bl1_plat_get_image_desc(unsigned int image_id) 165 { 166 unsigned int index = 0; 167 168 while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) { 169 if (bl1_tbbr_image_descs[index].image_id == image_id) 170 return &bl1_tbbr_image_descs[index]; 171 172 index++; 173 } 174 175 return NULL; 176 } 177 178 void bl1_plat_set_ep_info(unsigned int image_id, 179 entry_point_info_t *ep_info) 180 { 181 uint64_t data = 0; 182 183 if (image_id == BL2_IMAGE_ID) 184 panic(); 185 inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE); 186 __asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data)); 187 do { 188 data |= 3 << 20; 189 __asm__ volatile ("msr cpacr_el1, %0" : : "r"(data)); 190 __asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data)); 191 } while ((data & (3 << 20)) != (3 << 20)); 192 INFO("cpacr_el1:0x%lx\n", data); 193 194 ep_info->args.arg0 = 0xffff & read_mpidr(); 195 ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, 196 DISABLE_ALL_EXCEPTIONS); 197 } 198