xref: /rk3399_ARM-atf/plat/common/plat_gicv3.c (revision 51faada71a219a8b94cd8d8e423f0f22e9da4d8f)
1 /*
2  * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <arch_helpers.h>
31 #include <assert.h>
32 #include <bl_common.h>
33 #include <cassert.h>
34 #include <gic_common.h>
35 #include <gicv3.h>
36 #include <interrupt_mgmt.h>
37 #include <platform.h>
38 
39 #ifdef IMAGE_BL31
40 
41 /*
42  * The following platform GIC functions are weakly defined. They
43  * provide typical implementations that may be re-used by multiple
44  * platforms but may also be overridden by a platform if required.
45  */
46 #pragma weak plat_ic_get_pending_interrupt_id
47 #pragma weak plat_ic_get_pending_interrupt_type
48 #pragma weak plat_ic_acknowledge_interrupt
49 #pragma weak plat_ic_get_interrupt_type
50 #pragma weak plat_ic_end_of_interrupt
51 #pragma weak plat_interrupt_type_to_line
52 
53 CASSERT((INTR_TYPE_S_EL1 == INTR_GROUP1S) &&
54 	(INTR_TYPE_NS == INTR_GROUP1NS) &&
55 	(INTR_TYPE_EL3 == INTR_GROUP0), assert_interrupt_type_mismatch);
56 
57 /*
58  * This function returns the highest priority pending interrupt at
59  * the Interrupt controller
60  */
61 uint32_t plat_ic_get_pending_interrupt_id(void)
62 {
63 	unsigned int irqnr;
64 
65 	assert(IS_IN_EL3());
66 	irqnr = gicv3_get_pending_interrupt_id();
67 	return (gicv3_is_intr_id_special_identifier(irqnr)) ?
68 				INTR_ID_UNAVAILABLE : irqnr;
69 }
70 
71 /*
72  * This function returns the type of the highest priority pending interrupt
73  * at the Interrupt controller. In the case of GICv3, the Highest Priority
74  * Pending interrupt system register (`ICC_HPPIR0_EL1`) is read to determine
75  * the id of the pending interrupt. The type of interrupt depends upon the
76  * id value as follows.
77  *   1. id = PENDING_G1S_INTID (1020) is reported as a S-EL1 interrupt
78  *   2. id = PENDING_G1NS_INTID (1021) is reported as a Non-secure interrupt.
79  *   3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt
80  *           type.
81  *   4. All other interrupt id's are reported as EL3 interrupt.
82  */
83 uint32_t plat_ic_get_pending_interrupt_type(void)
84 {
85 	unsigned int irqnr;
86 
87 	assert(IS_IN_EL3());
88 	irqnr = gicv3_get_pending_interrupt_type();
89 
90 	switch (irqnr) {
91 	case PENDING_G1S_INTID:
92 		return INTR_TYPE_S_EL1;
93 	case PENDING_G1NS_INTID:
94 		return INTR_TYPE_NS;
95 	case GIC_SPURIOUS_INTERRUPT:
96 		return INTR_TYPE_INVAL;
97 	default:
98 		return INTR_TYPE_EL3;
99 	}
100 }
101 
102 /*
103  * This function returns the highest priority pending interrupt at
104  * the Interrupt controller and indicates to the Interrupt controller
105  * that the interrupt processing has started.
106  */
107 uint32_t plat_ic_acknowledge_interrupt(void)
108 {
109 	assert(IS_IN_EL3());
110 	return gicv3_acknowledge_interrupt();
111 }
112 
113 /*
114  * This function returns the type of the interrupt `id`, depending on how
115  * the interrupt has been configured in the interrupt controller
116  */
117 uint32_t plat_ic_get_interrupt_type(uint32_t id)
118 {
119 	assert(IS_IN_EL3());
120 	return gicv3_get_interrupt_type(id, plat_my_core_pos());
121 }
122 
123 /*
124  * This functions is used to indicate to the interrupt controller that
125  * the processing of the interrupt corresponding to the `id` has
126  * finished.
127  */
128 void plat_ic_end_of_interrupt(uint32_t id)
129 {
130 	assert(IS_IN_EL3());
131 	gicv3_end_of_interrupt(id);
132 }
133 
134 /*
135  * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
136  * The interrupt controller knows which pin/line it uses to signal a type of
137  * interrupt. It lets the interrupt management framework determine for a type of
138  * interrupt and security state, which line should be used in the SCR_EL3 to
139  * control its routing to EL3. The interrupt line is represented as the bit
140  * position of the IRQ or FIQ bit in the SCR_EL3.
141  */
142 uint32_t plat_interrupt_type_to_line(uint32_t type,
143 				uint32_t security_state)
144 {
145 	assert(type == INTR_TYPE_S_EL1 ||
146 	       type == INTR_TYPE_EL3 ||
147 	       type == INTR_TYPE_NS);
148 
149 	assert(sec_state_is_valid(security_state));
150 	assert(IS_IN_EL3());
151 
152 	switch (type) {
153 	case INTR_TYPE_S_EL1:
154 		/*
155 		 * The S-EL1 interrupts are signaled as IRQ in S-EL0/1 contexts
156 		 * and as FIQ in the NS-EL0/1/2 contexts
157 		 */
158 		if (security_state == SECURE)
159 			return __builtin_ctz(SCR_IRQ_BIT);
160 		else
161 			return __builtin_ctz(SCR_FIQ_BIT);
162 	case INTR_TYPE_NS:
163 		/*
164 		 * The Non secure interrupts will be signaled as FIQ in S-EL0/1
165 		 * contexts and as IRQ in the NS-EL0/1/2 contexts.
166 		 */
167 		if (security_state == SECURE)
168 			return __builtin_ctz(SCR_FIQ_BIT);
169 		else
170 			return __builtin_ctz(SCR_IRQ_BIT);
171 	default:
172 		assert(0);
173 		/* Fall through in the release build */
174 	case INTR_TYPE_EL3:
175 		/*
176 		 * The EL3 interrupts are signaled as FIQ in both S-EL0/1 and
177 		 * NS-EL0/1/2 contexts
178 		 */
179 		return __builtin_ctz(SCR_FIQ_BIT);
180 	}
181 }
182 #endif
183 #ifdef IMAGE_BL32
184 
185 #pragma weak plat_ic_get_pending_interrupt_id
186 #pragma weak plat_ic_acknowledge_interrupt
187 #pragma weak plat_ic_end_of_interrupt
188 
189 /* In AArch32, the secure group1 interrupts are targeted to Secure PL1 */
190 #ifdef AARCH32
191 #define IS_IN_EL1()	IS_IN_SECURE()
192 #endif
193 
194 /*
195  * This function returns the highest priority pending interrupt at
196  * the Interrupt controller
197  */
198 uint32_t plat_ic_get_pending_interrupt_id(void)
199 {
200 	unsigned int irqnr;
201 
202 	assert(IS_IN_EL1());
203 	irqnr = gicv3_get_pending_interrupt_id_sel1();
204 	return (irqnr == GIC_SPURIOUS_INTERRUPT) ?
205 				INTR_ID_UNAVAILABLE : irqnr;
206 }
207 
208 /*
209  * This function returns the highest priority pending interrupt at
210  * the Interrupt controller and indicates to the Interrupt controller
211  * that the interrupt processing has started.
212  */
213 uint32_t plat_ic_acknowledge_interrupt(void)
214 {
215 	assert(IS_IN_EL1());
216 	return gicv3_acknowledge_interrupt_sel1();
217 }
218 
219 /*
220  * This functions is used to indicate to the interrupt controller that
221  * the processing of the interrupt corresponding to the `id` has
222  * finished.
223  */
224 void plat_ic_end_of_interrupt(uint32_t id)
225 {
226 	assert(IS_IN_EL1());
227 	gicv3_end_of_interrupt_sel1(id);
228 }
229 #endif
230