xref: /rk3399_ARM-atf/plat/common/plat_gicv2.c (revision 51faada71a219a8b94cd8d8e423f0f22e9da4d8f)
1 /*
2  * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <assert.h>
31 #include <gic_common.h>
32 #include <gicv2.h>
33 #include <interrupt_mgmt.h>
34 
35 /*
36  * The following platform GIC functions are weakly defined. They
37  * provide typical implementations that may be re-used by multiple
38  * platforms but may also be overridden by a platform if required.
39  */
40 #pragma weak plat_ic_get_pending_interrupt_id
41 #pragma weak plat_ic_get_pending_interrupt_type
42 #pragma weak plat_ic_acknowledge_interrupt
43 #pragma weak plat_ic_get_interrupt_type
44 #pragma weak plat_ic_end_of_interrupt
45 #pragma weak plat_interrupt_type_to_line
46 
47 /*
48  * This function returns the highest priority pending interrupt at
49  * the Interrupt controller
50  */
51 uint32_t plat_ic_get_pending_interrupt_id(void)
52 {
53 	unsigned int id;
54 
55 	id = gicv2_get_pending_interrupt_id();
56 	if (id == GIC_SPURIOUS_INTERRUPT)
57 		return INTR_ID_UNAVAILABLE;
58 
59 	return id;
60 }
61 
62 /*
63  * This function returns the type of the highest priority pending interrupt
64  * at the Interrupt controller. In the case of GICv2, the Highest Priority
65  * Pending interrupt register (`GICC_HPPIR`) is read to determine the id of
66  * the pending interrupt. The type of interrupt depends upon the id value
67  * as follows.
68  *   1. id < PENDING_G1_INTID (1022) is reported as a S-EL1 interrupt
69  *   2. id = PENDING_G1_INTID (1022) is reported as a Non-secure interrupt.
70  *   3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt
71  *           type.
72  */
73 uint32_t plat_ic_get_pending_interrupt_type(void)
74 {
75 	unsigned int id;
76 
77 	id = gicv2_get_pending_interrupt_type();
78 
79 	/* Assume that all secure interrupts are S-EL1 interrupts */
80 	if (id < PENDING_G1_INTID)
81 		return INTR_TYPE_S_EL1;
82 
83 	if (id == GIC_SPURIOUS_INTERRUPT)
84 		return INTR_TYPE_INVAL;
85 
86 	return INTR_TYPE_NS;
87 }
88 
89 /*
90  * This function returns the highest priority pending interrupt at
91  * the Interrupt controller and indicates to the Interrupt controller
92  * that the interrupt processing has started.
93  */
94 uint32_t plat_ic_acknowledge_interrupt(void)
95 {
96 	return gicv2_acknowledge_interrupt();
97 }
98 
99 /*
100  * This function returns the type of the interrupt `id`, depending on how
101  * the interrupt has been configured in the interrupt controller
102  */
103 uint32_t plat_ic_get_interrupt_type(uint32_t id)
104 {
105 	unsigned int type;
106 
107 	type = gicv2_get_interrupt_group(id);
108 
109 	/* Assume that all secure interrupts are S-EL1 interrupts */
110 	return (type) ? INTR_TYPE_NS : INTR_TYPE_S_EL1;
111 }
112 
113 /*
114  * This functions is used to indicate to the interrupt controller that
115  * the processing of the interrupt corresponding to the `id` has
116  * finished.
117  */
118 void plat_ic_end_of_interrupt(uint32_t id)
119 {
120 	gicv2_end_of_interrupt(id);
121 }
122 
123 /*
124  * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
125  * The interrupt controller knows which pin/line it uses to signal a type of
126  * interrupt. It lets the interrupt management framework determine
127  * for a type of interrupt and security state, which line should be used in the
128  * SCR_EL3 to control its routing to EL3. The interrupt line is represented
129  * as the bit position of the IRQ or FIQ bit in the SCR_EL3.
130  */
131 uint32_t plat_interrupt_type_to_line(uint32_t type,
132 				uint32_t security_state)
133 {
134 	assert(type == INTR_TYPE_S_EL1 ||
135 		       type == INTR_TYPE_EL3 ||
136 		       type == INTR_TYPE_NS);
137 
138 	/* Non-secure interrupts are signaled on the IRQ line always */
139 	if (type == INTR_TYPE_NS)
140 		return __builtin_ctz(SCR_IRQ_BIT);
141 
142 	/*
143 	 * Secure interrupts are signaled using the IRQ line if the FIQ is
144 	 * not enabled else they are signaled using the FIQ line.
145 	 */
146 	return ((gicv2_is_fiq_enabled()) ? __builtin_ctz(SCR_FIQ_BIT) :
147 						__builtin_ctz(SCR_IRQ_BIT));
148 }
149