xref: /rk3399_ARM-atf/plat/common/plat_gicv2.c (revision 1727d690d29ef604f1fcf183e35c06d33d974e63)
1 /*
2  * Copyright (c) 2015-2023, Arm Limited and Contributors. All rights reserved.
3  * Portions copyright (c) 2021-2022, ProvenRun S.A.S. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 
11 #include <bl31/interrupt_mgmt.h>
12 #include <drivers/arm/gic_common.h>
13 #include <drivers/arm/gicv2.h>
14 #include <plat/common/platform.h>
15 
16 /*
17  * The following platform GIC functions are weakly defined. They
18  * provide typical implementations that may be re-used by multiple
19  * platforms but may also be overridden by a platform if required.
20  */
21 #pragma weak plat_ic_get_pending_interrupt_id
22 #pragma weak plat_ic_get_pending_interrupt_type
23 #pragma weak plat_ic_acknowledge_interrupt
24 #pragma weak plat_ic_get_interrupt_type
25 #pragma weak plat_ic_end_of_interrupt
26 #pragma weak plat_interrupt_type_to_line
27 
28 #pragma weak plat_ic_get_running_priority
29 #pragma weak plat_ic_is_spi
30 #pragma weak plat_ic_is_ppi
31 #pragma weak plat_ic_is_sgi
32 #pragma weak plat_ic_get_interrupt_active
33 #pragma weak plat_ic_enable_interrupt
34 #pragma weak plat_ic_disable_interrupt
35 #pragma weak plat_ic_set_interrupt_priority
36 #pragma weak plat_ic_set_interrupt_type
37 #pragma weak plat_ic_raise_el3_sgi
38 #pragma weak plat_ic_raise_ns_sgi
39 #pragma weak plat_ic_raise_s_el1_sgi
40 #pragma weak plat_ic_set_spi_routing
41 
42 /*
43  * This function returns the highest priority pending interrupt at
44  * the Interrupt controller
45  */
46 uint32_t plat_ic_get_pending_interrupt_id(void)
47 {
48 	unsigned int id;
49 
50 	id = gicv2_get_pending_interrupt_id();
51 	if (id == GIC_SPURIOUS_INTERRUPT) {
52 		id = INTR_ID_UNAVAILABLE;
53 	}
54 
55 	return id;
56 }
57 
58 /*
59  * This function returns the type of the highest priority pending interrupt
60  * at the Interrupt controller. In the case of GICv2, the Highest Priority
61  * Pending interrupt register (`GICC_HPPIR`) is read to determine the id of
62  * the pending interrupt. The type of interrupt depends upon the id value
63  * as follows.
64  *   1. id < PENDING_G1_INTID (1022) is reported as a S-EL1 interrupt
65  *   2. id = PENDING_G1_INTID (1022) is reported as a Non-secure interrupt.
66  *   3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt
67  *           type.
68  */
69 uint32_t plat_ic_get_pending_interrupt_type(void)
70 {
71 	unsigned int id;
72 	uint32_t interrupt_type;
73 
74 	id = gicv2_get_pending_interrupt_type();
75 
76 	/* Assume that all secure interrupts are S-EL1 interrupts */
77 	if (id < PENDING_G1_INTID) {
78 #if GICV2_G0_FOR_EL3
79 		interrupt_type = INTR_TYPE_EL3;
80 #else
81 		interrupt_type = INTR_TYPE_S_EL1;
82 #endif
83 	} else {
84 
85 		if (id == GIC_SPURIOUS_INTERRUPT) {
86 			interrupt_type = INTR_TYPE_INVAL;
87 		} else {
88 			interrupt_type = INTR_TYPE_NS;
89 		}
90 	}
91 
92 	return interrupt_type;
93 }
94 
95 /*
96  * This function returns the highest priority pending interrupt at
97  * the Interrupt controller and indicates to the Interrupt controller
98  * that the interrupt processing has started.
99  */
100 uint32_t plat_ic_acknowledge_interrupt(void)
101 {
102 	return gicv2_acknowledge_interrupt();
103 }
104 
105 /*
106  * This function returns the type of the interrupt `id`, depending on how
107  * the interrupt has been configured in the interrupt controller
108  */
109 uint32_t plat_ic_get_interrupt_type(uint32_t id)
110 {
111 	unsigned int type;
112 
113 	type = gicv2_get_interrupt_group(id);
114 
115 	/* Assume that all secure interrupts are S-EL1 interrupts */
116 	return (type == GICV2_INTR_GROUP1) ? INTR_TYPE_NS :
117 #if GICV2_G0_FOR_EL3
118 		INTR_TYPE_EL3;
119 #else
120 		INTR_TYPE_S_EL1;
121 #endif
122 }
123 
124 /*
125  * This functions is used to indicate to the interrupt controller that
126  * the processing of the interrupt corresponding to the `id` has
127  * finished.
128  */
129 void plat_ic_end_of_interrupt(uint32_t id)
130 {
131 	gicv2_end_of_interrupt(id);
132 }
133 
134 /*
135  * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
136  * The interrupt controller knows which pin/line it uses to signal a type of
137  * interrupt. It lets the interrupt management framework determine
138  * for a type of interrupt and security state, which line should be used in the
139  * SCR_EL3 to control its routing to EL3. The interrupt line is represented
140  * as the bit position of the IRQ or FIQ bit in the SCR_EL3.
141  */
142 uint32_t plat_interrupt_type_to_line(uint32_t type,
143 				uint32_t security_state)
144 {
145 	assert((type == INTR_TYPE_S_EL1) || (type == INTR_TYPE_EL3) ||
146 	       (type == INTR_TYPE_NS));
147 
148 	assert(sec_state_is_valid(security_state));
149 
150 	/* Non-secure interrupts are signaled on the IRQ line always */
151 	if (type == INTR_TYPE_NS) {
152 		return __builtin_ctz(SCR_IRQ_BIT);
153 	}
154 
155 	/*
156 	 * Secure interrupts are signaled using the IRQ line if the FIQ is
157 	 * not enabled else they are signaled using the FIQ line.
158 	 */
159 	return ((gicv2_is_fiq_enabled() != 0U) ? __builtin_ctz(SCR_FIQ_BIT) :
160 						 __builtin_ctz(SCR_IRQ_BIT));
161 }
162 
163 unsigned int plat_ic_get_running_priority(void)
164 {
165 	return gicv2_get_running_priority();
166 }
167 
168 int plat_ic_is_spi(unsigned int id)
169 {
170 	return (id >= MIN_SPI_ID) && (id <= MAX_SPI_ID);
171 }
172 
173 int plat_ic_is_ppi(unsigned int id)
174 {
175 	return (id >= MIN_PPI_ID) && (id < MIN_SPI_ID);
176 }
177 
178 int plat_ic_is_sgi(unsigned int id)
179 {
180 	return (id >= MIN_SGI_ID) && (id < MIN_PPI_ID);
181 }
182 
183 unsigned int plat_ic_get_interrupt_active(unsigned int id)
184 {
185 	return gicv2_get_interrupt_active(id);
186 }
187 
188 void plat_ic_enable_interrupt(unsigned int id)
189 {
190 	gicv2_enable_interrupt(id);
191 }
192 
193 void plat_ic_disable_interrupt(unsigned int id)
194 {
195 	gicv2_disable_interrupt(id);
196 }
197 
198 void plat_ic_set_interrupt_priority(unsigned int id, unsigned int priority)
199 {
200 	gicv2_set_interrupt_priority(id, priority);
201 }
202 
203 bool plat_ic_has_interrupt_type(unsigned int type)
204 {
205 	bool has_interrupt_type = false;
206 
207 	switch (type) {
208 #if GICV2_G0_FOR_EL3
209 	case INTR_TYPE_EL3:
210 #else
211 	case INTR_TYPE_S_EL1:
212 #endif
213 	case INTR_TYPE_NS:
214 		has_interrupt_type = true;
215 		break;
216 	default:
217 		/* Do nothing in default case */
218 		break;
219 	}
220 
221 	return has_interrupt_type;
222 }
223 
224 void plat_ic_set_interrupt_type(unsigned int id, unsigned int type)
225 {
226 	unsigned int gicv2_group = 0U;
227 
228 	/* Map canonical interrupt type to GICv2 type */
229 	switch (type) {
230 #if GICV2_G0_FOR_EL3
231 	case INTR_TYPE_EL3:
232 #else
233 	case INTR_TYPE_S_EL1:
234 #endif
235 		gicv2_group = GICV2_INTR_GROUP0;
236 		break;
237 	case INTR_TYPE_NS:
238 		gicv2_group = GICV2_INTR_GROUP1;
239 		break;
240 	default:
241 		assert(false); /* Unreachable */
242 		break;
243 	}
244 
245 	gicv2_set_interrupt_group(id, gicv2_group);
246 }
247 
248 void plat_ic_raise_el3_sgi(int sgi_num, u_register_t target)
249 {
250 #if GICV2_G0_FOR_EL3
251 	int id;
252 
253 	/* Target must be a valid MPIDR in the system */
254 	id = plat_core_pos_by_mpidr(target);
255 	assert(id >= 0);
256 
257 	/* Verify that this is a secure SGI */
258 	assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_EL3);
259 
260 	gicv2_raise_sgi(sgi_num, false, id);
261 #else
262 	assert(false);
263 #endif
264 }
265 
266 void plat_ic_raise_ns_sgi(int sgi_num, u_register_t target)
267 {
268 	int id;
269 
270 	/* Target must be a valid MPIDR in the system */
271 	id = plat_core_pos_by_mpidr(target);
272 	assert(id >= 0);
273 
274 	/* Verify that this is a non-secure SGI */
275 	assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_NS);
276 
277 	gicv2_raise_sgi(sgi_num, true, id);
278 }
279 
280 void plat_ic_raise_s_el1_sgi(int sgi_num, u_register_t target)
281 {
282 #if GICV2_G0_FOR_EL3
283 	assert(false);
284 #else
285 	int id;
286 
287 	/* Target must be a valid MPIDR in the system */
288 	id = plat_core_pos_by_mpidr(target);
289 	assert(id >= 0);
290 
291 	/* Verify that this is a secure EL1 SGI */
292 	assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_S_EL1);
293 
294 	gicv2_raise_sgi(sgi_num, false, id);
295 #endif
296 }
297 
298 void plat_ic_set_spi_routing(unsigned int id, unsigned int routing_mode,
299 		u_register_t mpidr)
300 {
301 	int proc_num = 0;
302 
303 	switch (routing_mode) {
304 	case INTR_ROUTING_MODE_PE:
305 		proc_num = plat_core_pos_by_mpidr(mpidr);
306 		assert(proc_num >= 0);
307 		break;
308 	case INTR_ROUTING_MODE_ANY:
309 		/* Bit mask selecting all 8 CPUs as candidates */
310 		proc_num = -1;
311 		break;
312 	default:
313 		assert(0); /* Unreachable */
314 		break;
315 	}
316 
317 	gicv2_set_spi_routing(id, proc_num);
318 }
319 
320 void plat_ic_set_interrupt_pending(unsigned int id)
321 {
322 	gicv2_set_interrupt_pending(id);
323 }
324 
325 void plat_ic_clear_interrupt_pending(unsigned int id)
326 {
327 	gicv2_clear_interrupt_pending(id);
328 }
329 
330 unsigned int plat_ic_set_priority_mask(unsigned int mask)
331 {
332 	return gicv2_set_pmr(mask);
333 }
334 
335 unsigned int plat_ic_get_interrupt_id(unsigned int raw)
336 {
337 	unsigned int id = (raw & INT_ID_MASK);
338 
339 	if (id == GIC_SPURIOUS_INTERRUPT) {
340 		id = INTR_ID_UNAVAILABLE;
341 	}
342 
343 	return id;
344 }
345