xref: /rk3399_ARM-atf/plat/arm/common/arm_common.c (revision d323af9e3d903d981b42f954844a95a6bfef91ab)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <arch.h>
7 #include <arch_helpers.h>
8 #include <arm_xlat_tables.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <mmio.h>
12 #include <plat_arm.h>
13 #include <platform_def.h>
14 #include <platform.h>
15 #include <secure_partition.h>
16 
17 extern const mmap_region_t plat_arm_mmap[];
18 
19 /* Weak definitions may be overridden in specific ARM standard platform */
20 #pragma weak plat_get_ns_image_entrypoint
21 #pragma weak plat_arm_get_mmap
22 
23 /* Conditionally provide a weak definition of plat_get_syscnt_freq2 to avoid
24  * conflicts with the definition in plat/common. */
25 #if ERROR_DEPRECATED
26 #pragma weak plat_get_syscnt_freq2
27 #endif
28 
29 /*
30  * Set up the page tables for the generic and platform-specific memory regions.
31  * The size of the Trusted SRAM seen by the BL image must be specified as well
32  * as an array specifying the generic memory regions which can be;
33  * - Code section;
34  * - Read-only data section;
35  * - Coherent memory region, if applicable.
36  */
37 
38 void arm_setup_page_tables(const mmap_region_t bl_regions[],
39 			   const mmap_region_t plat_regions[])
40 {
41 #if LOG_LEVEL >= LOG_LEVEL_VERBOSE
42 	const mmap_region_t *regions = bl_regions;
43 
44 	while (regions->size != 0U) {
45 		VERBOSE("Region: 0x%lx - 0x%lx has attributes 0x%x\n",
46 				regions->base_va,
47 				(regions->base_va + regions->size),
48 				regions->attr);
49 		regions++;
50 	}
51 #endif
52 	/*
53 	 * Map the Trusted SRAM with appropriate memory attributes.
54 	 * Subsequent mappings will adjust the attributes for specific regions.
55 	 */
56 	mmap_add(bl_regions);
57 	/* Now (re-)map the platform-specific memory regions */
58 	mmap_add(plat_regions);
59 
60 	/* Create the page tables to reflect the above mappings */
61 	init_xlat_tables();
62 }
63 
64 uintptr_t plat_get_ns_image_entrypoint(void)
65 {
66 #ifdef PRELOADED_BL33_BASE
67 	return PRELOADED_BL33_BASE;
68 #else
69 	return PLAT_ARM_NS_IMAGE_OFFSET;
70 #endif
71 }
72 
73 /*******************************************************************************
74  * Gets SPSR for BL32 entry
75  ******************************************************************************/
76 uint32_t arm_get_spsr_for_bl32_entry(void)
77 {
78 	/*
79 	 * The Secure Payload Dispatcher service is responsible for
80 	 * setting the SPSR prior to entry into the BL32 image.
81 	 */
82 	return 0;
83 }
84 
85 /*******************************************************************************
86  * Gets SPSR for BL33 entry
87  ******************************************************************************/
88 #ifndef AARCH32
89 uint32_t arm_get_spsr_for_bl33_entry(void)
90 {
91 	unsigned int mode;
92 	uint32_t spsr;
93 
94 	/* Figure out what mode we enter the non-secure world in */
95 	mode = EL_IMPLEMENTED(2) ? MODE_EL2 : MODE_EL1;
96 
97 	/*
98 	 * TODO: Consider the possibility of specifying the SPSR in
99 	 * the FIP ToC and allowing the platform to have a say as
100 	 * well.
101 	 */
102 	spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
103 	return spsr;
104 }
105 #else
106 /*******************************************************************************
107  * Gets SPSR for BL33 entry
108  ******************************************************************************/
109 uint32_t arm_get_spsr_for_bl33_entry(void)
110 {
111 	unsigned int hyp_status, mode, spsr;
112 
113 	hyp_status = GET_VIRT_EXT(read_id_pfr1());
114 
115 	mode = (hyp_status) ? MODE32_hyp : MODE32_svc;
116 
117 	/*
118 	 * TODO: Consider the possibility of specifying the SPSR in
119 	 * the FIP ToC and allowing the platform to have a say as
120 	 * well.
121 	 */
122 	spsr = SPSR_MODE32(mode, plat_get_ns_image_entrypoint() & 0x1,
123 			SPSR_E_LITTLE, DISABLE_ALL_EXCEPTIONS);
124 	return spsr;
125 }
126 #endif /* AARCH32 */
127 
128 /*******************************************************************************
129  * Configures access to the system counter timer module.
130  ******************************************************************************/
131 #ifdef ARM_SYS_TIMCTL_BASE
132 void arm_configure_sys_timer(void)
133 {
134 	unsigned int reg_val;
135 
136 	/* Read the frequency of the system counter */
137 	unsigned int freq_val = plat_get_syscnt_freq2();
138 
139 #if ARM_CONFIG_CNTACR
140 	reg_val = (1 << CNTACR_RPCT_SHIFT) | (1 << CNTACR_RVCT_SHIFT);
141 	reg_val |= (1 << CNTACR_RFRQ_SHIFT) | (1 << CNTACR_RVOFF_SHIFT);
142 	reg_val |= (1 << CNTACR_RWVT_SHIFT) | (1 << CNTACR_RWPT_SHIFT);
143 	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTACR_BASE(PLAT_ARM_NSTIMER_FRAME_ID), reg_val);
144 #endif /* ARM_CONFIG_CNTACR */
145 
146 	reg_val = (1 << CNTNSAR_NS_SHIFT(PLAT_ARM_NSTIMER_FRAME_ID));
147 	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTNSAR, reg_val);
148 
149 	/*
150 	 * Initialize CNTFRQ register in CNTCTLBase frame. The CNTFRQ
151 	 * system register initialized during psci_arch_setup() is different
152 	 * from this and has to be updated independently.
153 	 */
154 	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTCTLBASE_CNTFRQ, freq_val);
155 
156 #ifdef PLAT_juno
157 	/*
158 	 * Initialize CNTFRQ register in Non-secure CNTBase frame.
159 	 * This is only required for Juno, because it doesn't follow ARM ARM
160 	 * in that the value updated in CNTFRQ is not reflected in CNTBASE_CNTFRQ.
161 	 * Hence update the value manually.
162 	 */
163 	mmio_write_32(ARM_SYS_CNT_BASE_NS + CNTBASE_CNTFRQ, freq_val);
164 #endif
165 }
166 #endif /* ARM_SYS_TIMCTL_BASE */
167 
168 /*******************************************************************************
169  * Returns ARM platform specific memory map regions.
170  ******************************************************************************/
171 const mmap_region_t *plat_arm_get_mmap(void)
172 {
173 	return plat_arm_mmap;
174 }
175 
176 #ifdef ARM_SYS_CNTCTL_BASE
177 
178 unsigned int plat_get_syscnt_freq2(void)
179 {
180 	unsigned int counter_base_frequency;
181 
182 	/* Read the frequency from Frequency modes table */
183 	counter_base_frequency = mmio_read_32(ARM_SYS_CNTCTL_BASE + CNTFID_OFF);
184 
185 	/* The first entry of the frequency modes table must not be 0 */
186 	if (counter_base_frequency == 0)
187 		panic();
188 
189 	return counter_base_frequency;
190 }
191 
192 #endif /* ARM_SYS_CNTCTL_BASE */
193 
194 #if SDEI_SUPPORT
195 /*
196  * Translate SDEI entry point to PA, and perform standard ARM entry point
197  * validation on it.
198  */
199 int plat_sdei_validate_entry_point(uintptr_t ep, unsigned int client_mode)
200 {
201 	uint64_t par, pa;
202 	uint32_t scr_el3;
203 
204 	/* Doing Non-secure address translation requires SCR_EL3.NS set */
205 	scr_el3 = read_scr_el3();
206 	write_scr_el3(scr_el3 | SCR_NS_BIT);
207 	isb();
208 
209 	assert((client_mode == MODE_EL2) || (client_mode == MODE_EL1));
210 	if (client_mode == MODE_EL2) {
211 		/*
212 		 * Translate entry point to Physical Address using the EL2
213 		 * translation regime.
214 		 */
215 		ats1e2r(ep);
216 	} else {
217 		/*
218 		 * Translate entry point to Physical Address using the EL1&0
219 		 * translation regime, including stage 2.
220 		 */
221 		ats12e1r(ep);
222 	}
223 	isb();
224 	par = read_par_el1();
225 
226 	/* Restore original SCRL_EL3 */
227 	write_scr_el3(scr_el3);
228 	isb();
229 
230 	/* If the translation resulted in fault, return failure */
231 	if ((par & PAR_F_MASK) != 0)
232 		return -1;
233 
234 	/* Extract Physical Address from PAR */
235 	pa = (par & (PAR_ADDR_MASK << PAR_ADDR_SHIFT));
236 
237 	/* Perform NS entry point validation on the physical address */
238 	return arm_validate_ns_entrypoint(pa);
239 }
240 #endif
241