xref: /rk3399_ARM-atf/plat/arm/common/arm_common.c (revision 61f72a34250d063da67f4fc2b0eb8c3fda3376be)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <arch.h>
7 #include <arch_helpers.h>
8 #include <arm_xlat_tables.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <mmio.h>
12 #include <plat_arm.h>
13 #include <platform_def.h>
14 #include <platform.h>
15 #include <secure_partition.h>
16 
17 /* Weak definitions may be overridden in specific ARM standard platform */
18 #pragma weak plat_get_ns_image_entrypoint
19 #pragma weak plat_arm_get_mmap
20 
21 /* Conditionally provide a weak definition of plat_get_syscnt_freq2 to avoid
22  * conflicts with the definition in plat/common. */
23 #if ERROR_DEPRECATED
24 #pragma weak plat_get_syscnt_freq2
25 #endif
26 
27 /*
28  * Set up the page tables for the generic and platform-specific memory regions.
29  * The size of the Trusted SRAM seen by the BL image must be specified as well
30  * as an array specifying the generic memory regions which can be;
31  * - Code section;
32  * - Read-only data section;
33  * - Coherent memory region, if applicable.
34  */
35 
36 void arm_setup_page_tables(const mmap_region_t bl_regions[],
37 			   const mmap_region_t plat_regions[])
38 {
39 #if LOG_LEVEL >= LOG_LEVEL_VERBOSE
40 	const mmap_region_t *regions = bl_regions;
41 
42 	while (regions->size != 0U) {
43 		VERBOSE("Region: 0x%lx - 0x%lx has attributes 0x%x\n",
44 				regions->base_va,
45 				(regions->base_va + regions->size),
46 				regions->attr);
47 		regions++;
48 	}
49 #endif
50 	/*
51 	 * Map the Trusted SRAM with appropriate memory attributes.
52 	 * Subsequent mappings will adjust the attributes for specific regions.
53 	 */
54 	mmap_add(bl_regions);
55 	/* Now (re-)map the platform-specific memory regions */
56 	mmap_add(plat_regions);
57 
58 	/* Create the page tables to reflect the above mappings */
59 	init_xlat_tables();
60 }
61 
62 uintptr_t plat_get_ns_image_entrypoint(void)
63 {
64 #ifdef PRELOADED_BL33_BASE
65 	return PRELOADED_BL33_BASE;
66 #else
67 	return PLAT_ARM_NS_IMAGE_OFFSET;
68 #endif
69 }
70 
71 /*******************************************************************************
72  * Gets SPSR for BL32 entry
73  ******************************************************************************/
74 uint32_t arm_get_spsr_for_bl32_entry(void)
75 {
76 	/*
77 	 * The Secure Payload Dispatcher service is responsible for
78 	 * setting the SPSR prior to entry into the BL32 image.
79 	 */
80 	return 0;
81 }
82 
83 /*******************************************************************************
84  * Gets SPSR for BL33 entry
85  ******************************************************************************/
86 #ifndef AARCH32
87 uint32_t arm_get_spsr_for_bl33_entry(void)
88 {
89 	unsigned int mode;
90 	uint32_t spsr;
91 
92 	/* Figure out what mode we enter the non-secure world in */
93 	mode = EL_IMPLEMENTED(2) ? MODE_EL2 : MODE_EL1;
94 
95 	/*
96 	 * TODO: Consider the possibility of specifying the SPSR in
97 	 * the FIP ToC and allowing the platform to have a say as
98 	 * well.
99 	 */
100 	spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
101 	return spsr;
102 }
103 #else
104 /*******************************************************************************
105  * Gets SPSR for BL33 entry
106  ******************************************************************************/
107 uint32_t arm_get_spsr_for_bl33_entry(void)
108 {
109 	unsigned int hyp_status, mode, spsr;
110 
111 	hyp_status = GET_VIRT_EXT(read_id_pfr1());
112 
113 	mode = (hyp_status) ? MODE32_hyp : MODE32_svc;
114 
115 	/*
116 	 * TODO: Consider the possibility of specifying the SPSR in
117 	 * the FIP ToC and allowing the platform to have a say as
118 	 * well.
119 	 */
120 	spsr = SPSR_MODE32(mode, plat_get_ns_image_entrypoint() & 0x1,
121 			SPSR_E_LITTLE, DISABLE_ALL_EXCEPTIONS);
122 	return spsr;
123 }
124 #endif /* AARCH32 */
125 
126 /*******************************************************************************
127  * Configures access to the system counter timer module.
128  ******************************************************************************/
129 #ifdef ARM_SYS_TIMCTL_BASE
130 void arm_configure_sys_timer(void)
131 {
132 	unsigned int reg_val;
133 
134 	/* Read the frequency of the system counter */
135 	unsigned int freq_val = plat_get_syscnt_freq2();
136 
137 #if ARM_CONFIG_CNTACR
138 	reg_val = (1 << CNTACR_RPCT_SHIFT) | (1 << CNTACR_RVCT_SHIFT);
139 	reg_val |= (1 << CNTACR_RFRQ_SHIFT) | (1 << CNTACR_RVOFF_SHIFT);
140 	reg_val |= (1 << CNTACR_RWVT_SHIFT) | (1 << CNTACR_RWPT_SHIFT);
141 	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTACR_BASE(PLAT_ARM_NSTIMER_FRAME_ID), reg_val);
142 #endif /* ARM_CONFIG_CNTACR */
143 
144 	reg_val = (1 << CNTNSAR_NS_SHIFT(PLAT_ARM_NSTIMER_FRAME_ID));
145 	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTNSAR, reg_val);
146 
147 	/*
148 	 * Initialize CNTFRQ register in CNTCTLBase frame. The CNTFRQ
149 	 * system register initialized during psci_arch_setup() is different
150 	 * from this and has to be updated independently.
151 	 */
152 	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTCTLBASE_CNTFRQ, freq_val);
153 
154 #ifdef PLAT_juno
155 	/*
156 	 * Initialize CNTFRQ register in Non-secure CNTBase frame.
157 	 * This is only required for Juno, because it doesn't follow ARM ARM
158 	 * in that the value updated in CNTFRQ is not reflected in CNTBASE_CNTFRQ.
159 	 * Hence update the value manually.
160 	 */
161 	mmio_write_32(ARM_SYS_CNT_BASE_NS + CNTBASE_CNTFRQ, freq_val);
162 #endif
163 }
164 #endif /* ARM_SYS_TIMCTL_BASE */
165 
166 /*******************************************************************************
167  * Returns ARM platform specific memory map regions.
168  ******************************************************************************/
169 const mmap_region_t *plat_arm_get_mmap(void)
170 {
171 	return plat_arm_mmap;
172 }
173 
174 #ifdef ARM_SYS_CNTCTL_BASE
175 
176 unsigned int plat_get_syscnt_freq2(void)
177 {
178 	unsigned int counter_base_frequency;
179 
180 	/* Read the frequency from Frequency modes table */
181 	counter_base_frequency = mmio_read_32(ARM_SYS_CNTCTL_BASE + CNTFID_OFF);
182 
183 	/* The first entry of the frequency modes table must not be 0 */
184 	if (counter_base_frequency == 0)
185 		panic();
186 
187 	return counter_base_frequency;
188 }
189 
190 #endif /* ARM_SYS_CNTCTL_BASE */
191 
192 #if SDEI_SUPPORT
193 /*
194  * Translate SDEI entry point to PA, and perform standard ARM entry point
195  * validation on it.
196  */
197 int plat_sdei_validate_entry_point(uintptr_t ep, unsigned int client_mode)
198 {
199 	uint64_t par, pa;
200 	uint32_t scr_el3;
201 
202 	/* Doing Non-secure address translation requires SCR_EL3.NS set */
203 	scr_el3 = read_scr_el3();
204 	write_scr_el3(scr_el3 | SCR_NS_BIT);
205 	isb();
206 
207 	assert((client_mode == MODE_EL2) || (client_mode == MODE_EL1));
208 	if (client_mode == MODE_EL2) {
209 		/*
210 		 * Translate entry point to Physical Address using the EL2
211 		 * translation regime.
212 		 */
213 		ats1e2r(ep);
214 	} else {
215 		/*
216 		 * Translate entry point to Physical Address using the EL1&0
217 		 * translation regime, including stage 2.
218 		 */
219 		ats12e1r(ep);
220 	}
221 	isb();
222 	par = read_par_el1();
223 
224 	/* Restore original SCRL_EL3 */
225 	write_scr_el3(scr_el3);
226 	isb();
227 
228 	/* If the translation resulted in fault, return failure */
229 	if ((par & PAR_F_MASK) != 0)
230 		return -1;
231 
232 	/* Extract Physical Address from PAR */
233 	pa = (par & (PAR_ADDR_MASK << PAR_ADDR_SHIFT));
234 
235 	/* Perform NS entry point validation on the physical address */
236 	return arm_validate_ns_entrypoint(pa);
237 }
238 #endif
239