xref: /rk3399_ARM-atf/plat/arm/common/arm_common.c (revision 1dcc28cfbac5dae3992ad9581f9ea68f6cb339c1)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <arch.h>
7 #include <arch_helpers.h>
8 #include <arm_xlat_tables.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <mmio.h>
12 #include <plat_arm.h>
13 #include <platform.h>
14 #include <platform_def.h>
15 #include <romlib.h>
16 #include <secure_partition.h>
17 
18 /* Weak definitions may be overridden in specific ARM standard platform */
19 #pragma weak plat_get_ns_image_entrypoint
20 #pragma weak plat_arm_get_mmap
21 
22 /* Conditionally provide a weak definition of plat_get_syscnt_freq2 to avoid
23  * conflicts with the definition in plat/common. */
24 #pragma weak plat_get_syscnt_freq2
25 
26 
27 void arm_setup_romlib(void)
28 {
29 #if USE_ROMLIB
30 	if (!rom_lib_init(ROMLIB_VERSION))
31 		panic();
32 #endif
33 }
34 
35 /*
36  * Set up the page tables for the generic and platform-specific memory regions.
37  * The size of the Trusted SRAM seen by the BL image must be specified as well
38  * as an array specifying the generic memory regions which can be;
39  * - Code section;
40  * - Read-only data section;
41  * - Coherent memory region, if applicable.
42  */
43 
44 void arm_setup_page_tables(const mmap_region_t bl_regions[],
45 			   const mmap_region_t plat_regions[])
46 {
47 #if LOG_LEVEL >= LOG_LEVEL_VERBOSE
48 	const mmap_region_t *regions = bl_regions;
49 
50 	while (regions->size != 0U) {
51 		VERBOSE("Region: 0x%lx - 0x%lx has attributes 0x%x\n",
52 				regions->base_va,
53 				(regions->base_va + regions->size),
54 				regions->attr);
55 		regions++;
56 	}
57 #endif
58 	/*
59 	 * Map the Trusted SRAM with appropriate memory attributes.
60 	 * Subsequent mappings will adjust the attributes for specific regions.
61 	 */
62 	mmap_add(bl_regions);
63 	/* Now (re-)map the platform-specific memory regions */
64 	mmap_add(plat_regions);
65 
66 	/* Create the page tables to reflect the above mappings */
67 	init_xlat_tables();
68 }
69 
70 uintptr_t plat_get_ns_image_entrypoint(void)
71 {
72 #ifdef PRELOADED_BL33_BASE
73 	return PRELOADED_BL33_BASE;
74 #else
75 	return PLAT_ARM_NS_IMAGE_OFFSET;
76 #endif
77 }
78 
79 /*******************************************************************************
80  * Gets SPSR for BL32 entry
81  ******************************************************************************/
82 uint32_t arm_get_spsr_for_bl32_entry(void)
83 {
84 	/*
85 	 * The Secure Payload Dispatcher service is responsible for
86 	 * setting the SPSR prior to entry into the BL32 image.
87 	 */
88 	return 0;
89 }
90 
91 /*******************************************************************************
92  * Gets SPSR for BL33 entry
93  ******************************************************************************/
94 #ifndef AARCH32
95 uint32_t arm_get_spsr_for_bl33_entry(void)
96 {
97 	unsigned int mode;
98 	uint32_t spsr;
99 
100 	/* Figure out what mode we enter the non-secure world in */
101 	mode = EL_IMPLEMENTED(2) ? MODE_EL2 : MODE_EL1;
102 
103 	/*
104 	 * TODO: Consider the possibility of specifying the SPSR in
105 	 * the FIP ToC and allowing the platform to have a say as
106 	 * well.
107 	 */
108 	spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
109 	return spsr;
110 }
111 #else
112 /*******************************************************************************
113  * Gets SPSR for BL33 entry
114  ******************************************************************************/
115 uint32_t arm_get_spsr_for_bl33_entry(void)
116 {
117 	unsigned int hyp_status, mode, spsr;
118 
119 	hyp_status = GET_VIRT_EXT(read_id_pfr1());
120 
121 	mode = (hyp_status) ? MODE32_hyp : MODE32_svc;
122 
123 	/*
124 	 * TODO: Consider the possibility of specifying the SPSR in
125 	 * the FIP ToC and allowing the platform to have a say as
126 	 * well.
127 	 */
128 	spsr = SPSR_MODE32(mode, plat_get_ns_image_entrypoint() & 0x1,
129 			SPSR_E_LITTLE, DISABLE_ALL_EXCEPTIONS);
130 	return spsr;
131 }
132 #endif /* AARCH32 */
133 
134 /*******************************************************************************
135  * Configures access to the system counter timer module.
136  ******************************************************************************/
137 #ifdef ARM_SYS_TIMCTL_BASE
138 void arm_configure_sys_timer(void)
139 {
140 	unsigned int reg_val;
141 
142 	/* Read the frequency of the system counter */
143 	unsigned int freq_val = plat_get_syscnt_freq2();
144 
145 #if ARM_CONFIG_CNTACR
146 	reg_val = (1 << CNTACR_RPCT_SHIFT) | (1 << CNTACR_RVCT_SHIFT);
147 	reg_val |= (1 << CNTACR_RFRQ_SHIFT) | (1 << CNTACR_RVOFF_SHIFT);
148 	reg_val |= (1 << CNTACR_RWVT_SHIFT) | (1 << CNTACR_RWPT_SHIFT);
149 	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTACR_BASE(PLAT_ARM_NSTIMER_FRAME_ID), reg_val);
150 #endif /* ARM_CONFIG_CNTACR */
151 
152 	reg_val = (1 << CNTNSAR_NS_SHIFT(PLAT_ARM_NSTIMER_FRAME_ID));
153 	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTNSAR, reg_val);
154 
155 	/*
156 	 * Initialize CNTFRQ register in CNTCTLBase frame. The CNTFRQ
157 	 * system register initialized during psci_arch_setup() is different
158 	 * from this and has to be updated independently.
159 	 */
160 	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTCTLBASE_CNTFRQ, freq_val);
161 
162 #ifdef PLAT_juno
163 	/*
164 	 * Initialize CNTFRQ register in Non-secure CNTBase frame.
165 	 * This is only required for Juno, because it doesn't follow ARM ARM
166 	 * in that the value updated in CNTFRQ is not reflected in CNTBASE_CNTFRQ.
167 	 * Hence update the value manually.
168 	 */
169 	mmio_write_32(ARM_SYS_CNT_BASE_NS + CNTBASE_CNTFRQ, freq_val);
170 #endif
171 }
172 #endif /* ARM_SYS_TIMCTL_BASE */
173 
174 /*******************************************************************************
175  * Returns ARM platform specific memory map regions.
176  ******************************************************************************/
177 const mmap_region_t *plat_arm_get_mmap(void)
178 {
179 	return plat_arm_mmap;
180 }
181 
182 #ifdef ARM_SYS_CNTCTL_BASE
183 
184 unsigned int plat_get_syscnt_freq2(void)
185 {
186 	unsigned int counter_base_frequency;
187 
188 	/* Read the frequency from Frequency modes table */
189 	counter_base_frequency = mmio_read_32(ARM_SYS_CNTCTL_BASE + CNTFID_OFF);
190 
191 	/* The first entry of the frequency modes table must not be 0 */
192 	if (counter_base_frequency == 0)
193 		panic();
194 
195 	return counter_base_frequency;
196 }
197 
198 #endif /* ARM_SYS_CNTCTL_BASE */
199 
200 #if SDEI_SUPPORT
201 /*
202  * Translate SDEI entry point to PA, and perform standard ARM entry point
203  * validation on it.
204  */
205 int plat_sdei_validate_entry_point(uintptr_t ep, unsigned int client_mode)
206 {
207 	uint64_t par, pa;
208 	uint32_t scr_el3;
209 
210 	/* Doing Non-secure address translation requires SCR_EL3.NS set */
211 	scr_el3 = read_scr_el3();
212 	write_scr_el3(scr_el3 | SCR_NS_BIT);
213 	isb();
214 
215 	assert((client_mode == MODE_EL2) || (client_mode == MODE_EL1));
216 	if (client_mode == MODE_EL2) {
217 		/*
218 		 * Translate entry point to Physical Address using the EL2
219 		 * translation regime.
220 		 */
221 		ats1e2r(ep);
222 	} else {
223 		/*
224 		 * Translate entry point to Physical Address using the EL1&0
225 		 * translation regime, including stage 2.
226 		 */
227 		ats12e1r(ep);
228 	}
229 	isb();
230 	par = read_par_el1();
231 
232 	/* Restore original SCRL_EL3 */
233 	write_scr_el3(scr_el3);
234 	isb();
235 
236 	/* If the translation resulted in fault, return failure */
237 	if ((par & PAR_F_MASK) != 0)
238 		return -1;
239 
240 	/* Extract Physical Address from PAR */
241 	pa = (par & (PAR_ADDR_MASK << PAR_ADDR_SHIFT));
242 
243 	/* Perform NS entry point validation on the physical address */
244 	return arm_validate_ns_entrypoint(pa);
245 }
246 #endif
247