xref: /rk3399_ARM-atf/plat/arm/board/fvp/fvp_pm.c (revision f7d445fcbbd3d5146d95698ace3381fcf522b9af)
1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch_features.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <drivers/arm/gicv3.h>
13 #include <drivers/arm/fvp/fvp_pwrc.h>
14 #include <lib/extensions/spe.h>
15 #include <lib/mmio.h>
16 #include <lib/psci/psci.h>
17 #include <plat/arm/common/arm_config.h>
18 #include <plat/arm/common/plat_arm.h>
19 #include <platform_def.h>
20 
21 #include "fvp_private.h"
22 #include "../drivers/arm/gic/v3/gicv3_private.h"
23 
24 
25 #if ARM_RECOM_STATE_ID_ENC
26 /*
27  *  The table storing the valid idle power states. Ensure that the
28  *  array entries are populated in ascending order of state-id to
29  *  enable us to use binary search during power state validation.
30  *  The table must be terminated by a NULL entry.
31  */
32 const unsigned int arm_pm_idle_states[] = {
33 	/* State-id - 0x01 */
34 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_RET,
35 			ARM_PWR_LVL0, PSTATE_TYPE_STANDBY),
36 	/* State-id - 0x02 */
37 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_OFF,
38 			ARM_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
39 	/* State-id - 0x22 */
40 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
41 			ARM_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
42 	/* State-id - 0x222 */
43 	arm_make_pwrstate_lvl2(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
44 		ARM_LOCAL_STATE_OFF, ARM_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
45 	0,
46 };
47 #endif
48 
49 /*******************************************************************************
50  * Function which implements the common FVP specific operations to power down a
51  * cluster in response to a CPU_OFF or CPU_SUSPEND request.
52  ******************************************************************************/
53 static void fvp_cluster_pwrdwn_common(void)
54 {
55 	uint64_t mpidr = read_mpidr_el1();
56 
57 	/*
58 	 * On power down we need to disable statistical profiling extensions
59 	 * before exiting coherency.
60 	 */
61 	if (is_feat_spe_supported()) {
62 		spe_disable();
63 	}
64 
65 	/* Disable coherency if this cluster is to be turned off */
66 	fvp_interconnect_disable();
67 
68 #if HW_ASSISTED_COHERENCY
69 	uint32_t reg;
70 
71 	/*
72 	 * If we have determined this core to be the last man standing and we
73 	 * intend to power down the cluster proactively, we provide a hint to
74 	 * the power controller that cluster power is not required when all
75 	 * cores are powered down.
76 	 * Note that this is only an advisory to power controller and is supported
77 	 * by SoCs with DynamIQ Shared Units only.
78 	 */
79 	reg = read_clusterpwrdn();
80 
81 	/* Clear and set bit 0 : Cluster power not required */
82 	reg &= ~DSU_CLUSTER_PWR_MASK;
83 	reg |= DSU_CLUSTER_PWR_OFF;
84 	write_clusterpwrdn(reg);
85 #endif
86 
87 	/* Program the power controller to turn the cluster off */
88 	fvp_pwrc_write_pcoffr(mpidr);
89 }
90 
91 /*
92  * Empty implementation of these hooks avoid setting the GICR_WAKER.Sleep bit
93  * on ARM GICv3 implementations on FVP. This is required, because FVP does not
94  * support SYSTEM_SUSPEND and it is `faked` in firmware. Hence, for wake up
95  * from `fake` system suspend the GIC must not be powered off.
96  */
97 void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num)
98 {}
99 
100 void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num)
101 {}
102 
103 static void fvp_power_domain_on_finish_common(const psci_power_state_t *target_state)
104 {
105 	unsigned long mpidr;
106 
107 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
108 					ARM_LOCAL_STATE_OFF);
109 
110 	/* Get the mpidr for this cpu */
111 	mpidr = read_mpidr_el1();
112 
113 	/* Perform the common cluster specific operations */
114 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
115 					ARM_LOCAL_STATE_OFF) {
116 		/*
117 		 * This CPU might have woken up whilst the cluster was
118 		 * attempting to power down. In this case the FVP power
119 		 * controller will have a pending cluster power off request
120 		 * which needs to be cleared by writing to the PPONR register.
121 		 * This prevents the power controller from interpreting a
122 		 * subsequent entry of this cpu into a simple wfi as a power
123 		 * down request.
124 		 */
125 		fvp_pwrc_write_pponr(mpidr);
126 
127 		/* Enable coherency if this cluster was off */
128 		fvp_interconnect_enable();
129 	}
130 	/* Perform the common system specific operations */
131 	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
132 						ARM_LOCAL_STATE_OFF)
133 		arm_system_pwr_domain_resume();
134 
135 	/*
136 	 * Clear PWKUPR.WEN bit to ensure interrupts do not interfere
137 	 * with a cpu power down unless the bit is set again
138 	 */
139 	fvp_pwrc_clr_wen(mpidr);
140 }
141 
142 /*******************************************************************************
143  * FVP handler called when a CPU is about to enter standby.
144  ******************************************************************************/
145 static void fvp_cpu_standby(plat_local_state_t cpu_state)
146 {
147 	u_register_t scr = read_scr_el3();
148 
149 	assert(cpu_state == ARM_LOCAL_STATE_RET);
150 
151 	/*
152 	 * Enable the Non-secure interrupt to wake the CPU.
153 	 * In GICv3 affinity routing mode, the Non-secure Group 1 interrupts
154 	 * use Physical FIQ at EL3 whereas in GICv2, Physical IRQ is used.
155 	 * Enabling both the bits works for both GICv2 mode and GICv3 affinity
156 	 * routing mode.
157 	 */
158 	write_scr_el3(scr | SCR_IRQ_BIT | SCR_FIQ_BIT);
159 	isb();
160 
161 	/*
162 	 * Enter standby state.
163 	 * dsb is good practice before using wfi to enter low power states.
164 	 */
165 	dsb();
166 	wfi();
167 
168 	/*
169 	 * Restore SCR_EL3 to the original value, synchronisation of SCR_EL3
170 	 * is done by eret in el3_exit() to save some execution cycles.
171 	 */
172 	write_scr_el3(scr);
173 }
174 
175 /*******************************************************************************
176  * FVP handler called when a power domain is about to be turned on. The
177  * mpidr determines the CPU to be turned on.
178  ******************************************************************************/
179 static int fvp_pwr_domain_on(u_register_t mpidr)
180 {
181 	int rc = PSCI_E_SUCCESS;
182 	unsigned int psysr;
183 
184 	/*
185 	 * Ensure that we do not cancel an inflight power off request for the
186 	 * target cpu. That would leave it in a zombie wfi. Wait for it to power
187 	 * off and then program the power controller to turn that CPU on.
188 	 */
189 	do {
190 		psysr = fvp_pwrc_read_psysr(mpidr);
191 	} while ((psysr & PSYSR_AFF_L0) != 0U);
192 
193 	fvp_pwrc_write_pponr(mpidr);
194 	return rc;
195 }
196 
197 /*******************************************************************************
198  * FVP handler called when a power domain is about to be turned off. The
199  * target_state encodes the power state that each level should transition to.
200  ******************************************************************************/
201 static void fvp_pwr_domain_off(const psci_power_state_t *target_state)
202 {
203 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
204 					ARM_LOCAL_STATE_OFF);
205 
206 	/*
207 	 * If execution reaches this stage then this power domain will be
208 	 * suspended. Perform at least the cpu specific actions followed
209 	 * by the cluster specific operations if applicable.
210 	 */
211 
212 	/* Prevent interrupts from spuriously waking up this cpu */
213 	plat_arm_gic_cpuif_disable();
214 
215 	/* Turn redistributor off */
216 	plat_arm_gic_redistif_off();
217 
218 	/* Program the power controller to power off this cpu. */
219 	fvp_pwrc_write_ppoffr(read_mpidr_el1());
220 
221 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
222 					ARM_LOCAL_STATE_OFF)
223 		fvp_cluster_pwrdwn_common();
224 
225 }
226 
227 /*******************************************************************************
228  * FVP handler called when a power domain is about to be suspended. The
229  * target_state encodes the power state that each level should transition to.
230  ******************************************************************************/
231 static void fvp_pwr_domain_suspend(const psci_power_state_t *target_state)
232 {
233 	unsigned long mpidr;
234 
235 	/*
236 	 * FVP has retention only at cpu level. Just return
237 	 * as nothing is to be done for retention.
238 	 */
239 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
240 					ARM_LOCAL_STATE_RET)
241 		return;
242 
243 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
244 					ARM_LOCAL_STATE_OFF);
245 
246 	/* Get the mpidr for this cpu */
247 	mpidr = read_mpidr_el1();
248 
249 	/* Program the power controller to enable wakeup interrupts. */
250 	fvp_pwrc_set_wen(mpidr);
251 
252 	/* Prevent interrupts from spuriously waking up this cpu */
253 	plat_arm_gic_cpuif_disable();
254 
255 	/*
256 	 * The Redistributor is not powered off as it can potentially prevent
257 	 * wake up events reaching the CPUIF and/or might lead to losing
258 	 * register context.
259 	 */
260 
261 	/* Perform the common cluster specific operations */
262 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
263 					ARM_LOCAL_STATE_OFF)
264 		fvp_cluster_pwrdwn_common();
265 
266 	/* Perform the common system specific operations */
267 	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
268 						ARM_LOCAL_STATE_OFF)
269 		arm_system_pwr_domain_save();
270 
271 	/* Program the power controller to power off this cpu. */
272 	fvp_pwrc_write_ppoffr(read_mpidr_el1());
273 
274 	return;
275 }
276 
277 /*******************************************************************************
278  * FVP handler called when a power domain has just been powered on after
279  * being turned off earlier. The target_state encodes the low power state that
280  * each level has woken up from.
281  ******************************************************************************/
282 static void fvp_pwr_domain_on_finish(const psci_power_state_t *target_state)
283 {
284 	fvp_power_domain_on_finish_common(target_state);
285 
286 }
287 
288 /*******************************************************************************
289  * FVP handler called when a power domain has just been powered on and the cpu
290  * and its cluster are fully participating in coherent transaction on the
291  * interconnect. Data cache must be enabled for CPU at this point.
292  ******************************************************************************/
293 static void fvp_pwr_domain_on_finish_late(const psci_power_state_t *target_state)
294 {
295 	/* Program GIC per-cpu distributor or re-distributor interface */
296 	plat_arm_gic_pcpu_init();
297 
298 	/* Enable GIC CPU interface */
299 	plat_arm_gic_cpuif_enable();
300 }
301 
302 /*******************************************************************************
303  * FVP handler called when a power domain has just been powered on after
304  * having been suspended earlier. The target_state encodes the low power state
305  * that each level has woken up from.
306  * TODO: At the moment we reuse the on finisher and reinitialize the secure
307  * context. Need to implement a separate suspend finisher.
308  ******************************************************************************/
309 static void fvp_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
310 {
311 	/*
312 	 * Nothing to be done on waking up from retention from CPU level.
313 	 */
314 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
315 					ARM_LOCAL_STATE_RET)
316 		return;
317 
318 	fvp_power_domain_on_finish_common(target_state);
319 
320 	/* Enable GIC CPU interface */
321 	plat_arm_gic_cpuif_enable();
322 }
323 
324 /*******************************************************************************
325  * FVP handlers to shutdown/reboot the system
326  ******************************************************************************/
327 static void __dead2 fvp_system_off(void)
328 {
329 	/* Write the System Configuration Control Register */
330 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
331 		V2M_CFGCTRL_START |
332 		V2M_CFGCTRL_RW |
333 		V2M_CFGCTRL_FUNC(V2M_FUNC_SHUTDOWN));
334 	wfi();
335 	ERROR("FVP System Off: operation not handled.\n");
336 	panic();
337 }
338 
339 static void __dead2 fvp_system_reset(void)
340 {
341 	/* Write the System Configuration Control Register */
342 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
343 		V2M_CFGCTRL_START |
344 		V2M_CFGCTRL_RW |
345 		V2M_CFGCTRL_FUNC(V2M_FUNC_REBOOT));
346 	wfi();
347 	ERROR("FVP System Reset: operation not handled.\n");
348 	panic();
349 }
350 
351 static int fvp_node_hw_state(u_register_t target_cpu,
352 			     unsigned int power_level)
353 {
354 	unsigned int psysr;
355 	int ret;
356 
357 	/*
358 	 * The format of 'power_level' is implementation-defined, but 0 must
359 	 * mean a CPU. We also allow 1 to denote the cluster
360 	 */
361 	if ((power_level != ARM_PWR_LVL0) && (power_level != ARM_PWR_LVL1))
362 		return PSCI_E_INVALID_PARAMS;
363 
364 	/*
365 	 * Read the status of the given MPDIR from FVP power controller. The
366 	 * power controller only gives us on/off status, so map that to expected
367 	 * return values of the PSCI call
368 	 */
369 	psysr = fvp_pwrc_read_psysr(target_cpu);
370 	if (psysr == PSYSR_INVALID)
371 		return PSCI_E_INVALID_PARAMS;
372 
373 	if (power_level == ARM_PWR_LVL0) {
374 		ret = ((psysr & PSYSR_AFF_L0) != 0U) ? HW_ON : HW_OFF;
375 	} else {
376 		/* power_level == ARM_PWR_LVL1 */
377 		ret = ((psysr & PSYSR_AFF_L1) != 0U) ? HW_ON : HW_OFF;
378 	}
379 
380 	return ret;
381 }
382 
383 /*
384  * The FVP doesn't truly support power management at SYSTEM power domain. The
385  * SYSTEM_SUSPEND will be down-graded to the cluster level within the platform
386  * layer. The `fake` SYSTEM_SUSPEND allows us to validate some of the driver
387  * save and restore sequences on FVP.
388  */
389 #if !ARM_BL31_IN_DRAM
390 static void fvp_get_sys_suspend_power_state(psci_power_state_t *req_state)
391 {
392 	unsigned int i;
393 
394 	for (i = ARM_PWR_LVL0; i <= PLAT_MAX_PWR_LVL; i++)
395 		req_state->pwr_domain_state[i] = ARM_LOCAL_STATE_OFF;
396 }
397 #endif
398 
399 /*******************************************************************************
400  * Handler to filter PSCI requests.
401  ******************************************************************************/
402 /*
403  * The system power domain suspend is only supported only via
404  * PSCI SYSTEM_SUSPEND API. PSCI CPU_SUSPEND request to system power domain
405  * will be downgraded to the lower level.
406  */
407 static int fvp_validate_power_state(unsigned int power_state,
408 			    psci_power_state_t *req_state)
409 {
410 	int rc;
411 	rc = arm_validate_power_state(power_state, req_state);
412 
413 	/*
414 	 * Ensure that the system power domain level is never suspended
415 	 * via PSCI CPU SUSPEND API. Currently system suspend is only
416 	 * supported via PSCI SYSTEM SUSPEND API.
417 	 */
418 	req_state->pwr_domain_state[ARM_PWR_LVL2] = ARM_LOCAL_STATE_RUN;
419 	return rc;
420 }
421 
422 /*
423  * Custom `translate_power_state_by_mpidr` handler for FVP. Unlike in the
424  * `fvp_validate_power_state`, we do not downgrade the system power
425  * domain level request in `power_state` as it will be used to query the
426  * PSCI_STAT_COUNT/RESIDENCY at the system power domain level.
427  */
428 static int fvp_translate_power_state_by_mpidr(u_register_t mpidr,
429 		unsigned int power_state,
430 		psci_power_state_t *output_state)
431 {
432 	return arm_validate_power_state(power_state, output_state);
433 }
434 
435 /*******************************************************************************
436  * Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
437  * platform layer will take care of registering the handlers with PSCI.
438  ******************************************************************************/
439 plat_psci_ops_t plat_arm_psci_pm_ops = {
440 	.cpu_standby = fvp_cpu_standby,
441 	.pwr_domain_on = fvp_pwr_domain_on,
442 	.pwr_domain_off = fvp_pwr_domain_off,
443 	.pwr_domain_suspend = fvp_pwr_domain_suspend,
444 	.pwr_domain_on_finish = fvp_pwr_domain_on_finish,
445 	.pwr_domain_on_finish_late = fvp_pwr_domain_on_finish_late,
446 	.pwr_domain_suspend_finish = fvp_pwr_domain_suspend_finish,
447 	.system_off = fvp_system_off,
448 	.system_reset = fvp_system_reset,
449 	.validate_power_state = fvp_validate_power_state,
450 	.validate_ns_entrypoint = arm_validate_psci_entrypoint,
451 	.translate_power_state_by_mpidr = fvp_translate_power_state_by_mpidr,
452 	.get_node_hw_state = fvp_node_hw_state,
453 #if !ARM_BL31_IN_DRAM
454 	/*
455 	 * The TrustZone Controller is set up during the warmboot sequence after
456 	 * resuming the CPU from a SYSTEM_SUSPEND. If BL31 is located in SRAM
457 	 * this is  not a problem but, if it is in TZC-secured DRAM, it tries to
458 	 * reconfigure the same memory it is running on, causing an exception.
459 	 */
460 	.get_sys_suspend_power_state = fvp_get_sys_suspend_power_state,
461 #endif
462 	.mem_protect_chk	= arm_psci_mem_protect_chk,
463 	.read_mem_protect	= arm_psci_read_mem_protect,
464 	.write_mem_protect	= arm_nor_psci_write_mem_protect,
465 };
466 
467 const plat_psci_ops_t *plat_arm_psci_override_pm_ops(plat_psci_ops_t *ops)
468 {
469 	return ops;
470 }
471