xref: /rk3399_ARM-atf/plat/arm/board/fvp/fvp_pm.c (revision c3cf06f1a3a9b9ee8ac7a0ae505f95c45f7dca84)
1 /*
2  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <arm_config.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <errno.h>
12 #include <gicv3.h>
13 #include <mmio.h>
14 #include <plat_arm.h>
15 #include <platform.h>
16 #include <psci.h>
17 #include <spe.h>
18 #include <v2m_def.h>
19 #include "../../../../drivers/arm/gic/v3/gicv3_private.h"
20 #include "drivers/pwrc/fvp_pwrc.h"
21 #include "fvp_def.h"
22 #include "fvp_private.h"
23 
24 
25 #if ARM_RECOM_STATE_ID_ENC
26 /*
27  *  The table storing the valid idle power states. Ensure that the
28  *  array entries are populated in ascending order of state-id to
29  *  enable us to use binary search during power state validation.
30  *  The table must be terminated by a NULL entry.
31  */
32 const unsigned int arm_pm_idle_states[] = {
33 	/* State-id - 0x01 */
34 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_RET,
35 			ARM_PWR_LVL0, PSTATE_TYPE_STANDBY),
36 	/* State-id - 0x02 */
37 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_OFF,
38 			ARM_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
39 	/* State-id - 0x22 */
40 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
41 			ARM_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
42 	/* State-id - 0x222 */
43 	arm_make_pwrstate_lvl2(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
44 		ARM_LOCAL_STATE_OFF, ARM_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
45 	0,
46 };
47 #endif
48 
49 /*******************************************************************************
50  * Function which implements the common FVP specific operations to power down a
51  * cluster in response to a CPU_OFF or CPU_SUSPEND request.
52  ******************************************************************************/
53 static void fvp_cluster_pwrdwn_common(void)
54 {
55 	uint64_t mpidr = read_mpidr_el1();
56 
57 #if ENABLE_SPE_FOR_LOWER_ELS
58 	/*
59 	 * On power down we need to disable statistical profiling extensions
60 	 * before exiting coherency.
61 	 */
62 	spe_disable();
63 #endif
64 
65 	/* Disable coherency if this cluster is to be turned off */
66 	fvp_interconnect_disable();
67 
68 	/* Program the power controller to turn the cluster off */
69 	fvp_pwrc_write_pcoffr(mpidr);
70 }
71 
72 /*
73  * Empty implementation of these hooks avoid setting the GICR_WAKER.Sleep bit
74  * on ARM GICv3 implementations on FVP. This is required, because FVP does not
75  * support SYSTEM_SUSPEND and it is `faked` in firmware. Hence, for wake up
76  * from `fake` system suspend the GIC must not be powered off.
77  */
78 void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num)
79 {}
80 
81 void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num)
82 {}
83 
84 static void fvp_power_domain_on_finish_common(const psci_power_state_t *target_state)
85 {
86 	unsigned long mpidr;
87 
88 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
89 					ARM_LOCAL_STATE_OFF);
90 
91 	/* Get the mpidr for this cpu */
92 	mpidr = read_mpidr_el1();
93 
94 	/* Perform the common cluster specific operations */
95 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
96 					ARM_LOCAL_STATE_OFF) {
97 		/*
98 		 * This CPU might have woken up whilst the cluster was
99 		 * attempting to power down. In this case the FVP power
100 		 * controller will have a pending cluster power off request
101 		 * which needs to be cleared by writing to the PPONR register.
102 		 * This prevents the power controller from interpreting a
103 		 * subsequent entry of this cpu into a simple wfi as a power
104 		 * down request.
105 		 */
106 		fvp_pwrc_write_pponr(mpidr);
107 
108 		/* Enable coherency if this cluster was off */
109 		fvp_interconnect_enable();
110 	}
111 	/* Perform the common system specific operations */
112 	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
113 						ARM_LOCAL_STATE_OFF)
114 		arm_system_pwr_domain_resume();
115 
116 	/*
117 	 * Clear PWKUPR.WEN bit to ensure interrupts do not interfere
118 	 * with a cpu power down unless the bit is set again
119 	 */
120 	fvp_pwrc_clr_wen(mpidr);
121 }
122 
123 
124 /*******************************************************************************
125  * FVP handler called when a CPU is about to enter standby.
126  ******************************************************************************/
127 static void fvp_cpu_standby(plat_local_state_t cpu_state)
128 {
129 
130 	assert(cpu_state == ARM_LOCAL_STATE_RET);
131 
132 	/*
133 	 * Enter standby state
134 	 * dsb is good practice before using wfi to enter low power states
135 	 */
136 	dsb();
137 	wfi();
138 }
139 
140 /*******************************************************************************
141  * FVP handler called when a power domain is about to be turned on. The
142  * mpidr determines the CPU to be turned on.
143  ******************************************************************************/
144 static int fvp_pwr_domain_on(u_register_t mpidr)
145 {
146 	int rc = PSCI_E_SUCCESS;
147 	unsigned int psysr;
148 
149 	/*
150 	 * Ensure that we do not cancel an inflight power off request for the
151 	 * target cpu. That would leave it in a zombie wfi. Wait for it to power
152 	 * off and then program the power controller to turn that CPU on.
153 	 */
154 	do {
155 		psysr = fvp_pwrc_read_psysr(mpidr);
156 	} while ((psysr & PSYSR_AFF_L0) != 0U);
157 
158 	fvp_pwrc_write_pponr(mpidr);
159 	return rc;
160 }
161 
162 /*******************************************************************************
163  * FVP handler called when a power domain is about to be turned off. The
164  * target_state encodes the power state that each level should transition to.
165  ******************************************************************************/
166 static void fvp_pwr_domain_off(const psci_power_state_t *target_state)
167 {
168 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
169 					ARM_LOCAL_STATE_OFF);
170 
171 	/*
172 	 * If execution reaches this stage then this power domain will be
173 	 * suspended. Perform at least the cpu specific actions followed
174 	 * by the cluster specific operations if applicable.
175 	 */
176 
177 	/* Prevent interrupts from spuriously waking up this cpu */
178 	plat_arm_gic_cpuif_disable();
179 
180 	/* Turn redistributor off */
181 	plat_arm_gic_redistif_off();
182 
183 	/* Program the power controller to power off this cpu. */
184 	fvp_pwrc_write_ppoffr(read_mpidr_el1());
185 
186 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
187 					ARM_LOCAL_STATE_OFF)
188 		fvp_cluster_pwrdwn_common();
189 
190 }
191 
192 /*******************************************************************************
193  * FVP handler called when a power domain is about to be suspended. The
194  * target_state encodes the power state that each level should transition to.
195  ******************************************************************************/
196 static void fvp_pwr_domain_suspend(const psci_power_state_t *target_state)
197 {
198 	unsigned long mpidr;
199 
200 	/*
201 	 * FVP has retention only at cpu level. Just return
202 	 * as nothing is to be done for retention.
203 	 */
204 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
205 					ARM_LOCAL_STATE_RET)
206 		return;
207 
208 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
209 					ARM_LOCAL_STATE_OFF);
210 
211 	/* Get the mpidr for this cpu */
212 	mpidr = read_mpidr_el1();
213 
214 	/* Program the power controller to enable wakeup interrupts. */
215 	fvp_pwrc_set_wen(mpidr);
216 
217 	/* Prevent interrupts from spuriously waking up this cpu */
218 	plat_arm_gic_cpuif_disable();
219 
220 	/*
221 	 * The Redistributor is not powered off as it can potentially prevent
222 	 * wake up events reaching the CPUIF and/or might lead to losing
223 	 * register context.
224 	 */
225 
226 	/* Perform the common cluster specific operations */
227 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
228 					ARM_LOCAL_STATE_OFF)
229 		fvp_cluster_pwrdwn_common();
230 
231 	/* Perform the common system specific operations */
232 	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
233 						ARM_LOCAL_STATE_OFF)
234 		arm_system_pwr_domain_save();
235 
236 	/* Program the power controller to power off this cpu. */
237 	fvp_pwrc_write_ppoffr(read_mpidr_el1());
238 }
239 
240 /*******************************************************************************
241  * FVP handler called when a power domain has just been powered on after
242  * being turned off earlier. The target_state encodes the low power state that
243  * each level has woken up from.
244  ******************************************************************************/
245 static void fvp_pwr_domain_on_finish(const psci_power_state_t *target_state)
246 {
247 	fvp_power_domain_on_finish_common(target_state);
248 
249 	/* Enable the gic cpu interface */
250 	plat_arm_gic_pcpu_init();
251 
252 	/* Program the gic per-cpu distributor or re-distributor interface */
253 	plat_arm_gic_cpuif_enable();
254 }
255 
256 /*******************************************************************************
257  * FVP handler called when a power domain has just been powered on after
258  * having been suspended earlier. The target_state encodes the low power state
259  * that each level has woken up from.
260  * TODO: At the moment we reuse the on finisher and reinitialize the secure
261  * context. Need to implement a separate suspend finisher.
262  ******************************************************************************/
263 static void fvp_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
264 {
265 	/*
266 	 * Nothing to be done on waking up from retention from CPU level.
267 	 */
268 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
269 					ARM_LOCAL_STATE_RET)
270 		return;
271 
272 	fvp_power_domain_on_finish_common(target_state);
273 
274 	/* Enable the gic cpu interface */
275 	plat_arm_gic_cpuif_enable();
276 }
277 
278 /*******************************************************************************
279  * FVP handlers to shutdown/reboot the system
280  ******************************************************************************/
281 static void __dead2 fvp_system_off(void)
282 {
283 	/* Write the System Configuration Control Register */
284 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
285 		V2M_CFGCTRL_START |
286 		V2M_CFGCTRL_RW |
287 		V2M_CFGCTRL_FUNC(V2M_FUNC_SHUTDOWN));
288 	wfi();
289 	ERROR("FVP System Off: operation not handled.\n");
290 	panic();
291 }
292 
293 static void __dead2 fvp_system_reset(void)
294 {
295 	/* Write the System Configuration Control Register */
296 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
297 		V2M_CFGCTRL_START |
298 		V2M_CFGCTRL_RW |
299 		V2M_CFGCTRL_FUNC(V2M_FUNC_REBOOT));
300 	wfi();
301 	ERROR("FVP System Reset: operation not handled.\n");
302 	panic();
303 }
304 
305 static int fvp_node_hw_state(u_register_t target_cpu,
306 			     unsigned int power_level)
307 {
308 	unsigned int psysr;
309 	int ret;
310 
311 	/*
312 	 * The format of 'power_level' is implementation-defined, but 0 must
313 	 * mean a CPU. We also allow 1 to denote the cluster
314 	 */
315 	if ((power_level != ARM_PWR_LVL0) && (power_level != ARM_PWR_LVL1))
316 		return PSCI_E_INVALID_PARAMS;
317 
318 	/*
319 	 * Read the status of the given MPDIR from FVP power controller. The
320 	 * power controller only gives us on/off status, so map that to expected
321 	 * return values of the PSCI call
322 	 */
323 	psysr = fvp_pwrc_read_psysr(target_cpu);
324 	if (psysr == PSYSR_INVALID)
325 		return PSCI_E_INVALID_PARAMS;
326 
327 	if (power_level == ARM_PWR_LVL0) {
328 		ret = ((psysr & PSYSR_AFF_L0) != 0U) ? HW_ON : HW_OFF;
329 	} else {
330 		/* power_level == ARM_PWR_LVL1 */
331 		ret = ((psysr & PSYSR_AFF_L1) != 0U) ? HW_ON : HW_OFF;
332 	}
333 
334 	return ret;
335 }
336 
337 /*
338  * The FVP doesn't truly support power management at SYSTEM power domain. The
339  * SYSTEM_SUSPEND will be down-graded to the cluster level within the platform
340  * layer. The `fake` SYSTEM_SUSPEND allows us to validate some of the driver
341  * save and restore sequences on FVP.
342  */
343 #if !ARM_BL31_IN_DRAM
344 static void fvp_get_sys_suspend_power_state(psci_power_state_t *req_state)
345 {
346 	unsigned int i;
347 
348 	for (i = ARM_PWR_LVL0; i <= PLAT_MAX_PWR_LVL; i++)
349 		req_state->pwr_domain_state[i] = ARM_LOCAL_STATE_OFF;
350 }
351 #endif
352 
353 /*******************************************************************************
354  * Handler to filter PSCI requests.
355  ******************************************************************************/
356 /*
357  * The system power domain suspend is only supported only via
358  * PSCI SYSTEM_SUSPEND API. PSCI CPU_SUSPEND request to system power domain
359  * will be downgraded to the lower level.
360  */
361 static int fvp_validate_power_state(unsigned int power_state,
362 			    psci_power_state_t *req_state)
363 {
364 	int rc;
365 	rc = arm_validate_power_state(power_state, req_state);
366 
367 	/*
368 	 * Ensure that the system power domain level is never suspended
369 	 * via PSCI CPU SUSPEND API. Currently system suspend is only
370 	 * supported via PSCI SYSTEM SUSPEND API.
371 	 */
372 	req_state->pwr_domain_state[ARM_PWR_LVL2] = ARM_LOCAL_STATE_RUN;
373 	return rc;
374 }
375 
376 /*
377  * Custom `translate_power_state_by_mpidr` handler for FVP. Unlike in the
378  * `fvp_validate_power_state`, we do not downgrade the system power
379  * domain level request in `power_state` as it will be used to query the
380  * PSCI_STAT_COUNT/RESIDENCY at the system power domain level.
381  */
382 static int fvp_translate_power_state_by_mpidr(u_register_t mpidr,
383 		unsigned int power_state,
384 		psci_power_state_t *output_state)
385 {
386 	return arm_validate_power_state(power_state, output_state);
387 }
388 
389 /*******************************************************************************
390  * Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
391  * platform layer will take care of registering the handlers with PSCI.
392  ******************************************************************************/
393 plat_psci_ops_t plat_arm_psci_pm_ops = {
394 	.cpu_standby = fvp_cpu_standby,
395 	.pwr_domain_on = fvp_pwr_domain_on,
396 	.pwr_domain_off = fvp_pwr_domain_off,
397 	.pwr_domain_suspend = fvp_pwr_domain_suspend,
398 	.pwr_domain_on_finish = fvp_pwr_domain_on_finish,
399 	.pwr_domain_suspend_finish = fvp_pwr_domain_suspend_finish,
400 	.system_off = fvp_system_off,
401 	.system_reset = fvp_system_reset,
402 	.validate_power_state = fvp_validate_power_state,
403 	.validate_ns_entrypoint = arm_validate_psci_entrypoint,
404 	.translate_power_state_by_mpidr = fvp_translate_power_state_by_mpidr,
405 	.get_node_hw_state = fvp_node_hw_state,
406 #if !ARM_BL31_IN_DRAM
407 	/*
408 	 * The TrustZone Controller is set up during the warmboot sequence after
409 	 * resuming the CPU from a SYSTEM_SUSPEND. If BL31 is located in SRAM
410 	 * this is  not a problem but, if it is in TZC-secured DRAM, it tries to
411 	 * reconfigure the same memory it is running on, causing an exception.
412 	 */
413 	.get_sys_suspend_power_state = fvp_get_sys_suspend_power_state,
414 #endif
415 	.mem_protect_chk	= arm_psci_mem_protect_chk,
416 	.read_mem_protect	= arm_psci_read_mem_protect,
417 	.write_mem_protect	= arm_nor_psci_write_mem_protect,
418 };
419