xref: /rk3399_ARM-atf/plat/arm/board/fvp/fvp_pm.c (revision 649dbf6f3666fa4ec8bad318d01b946fb89063e0)
1 /*
2  * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch_helpers.h>
32 #include <arm_config.h>
33 #include <arm_gic.h>
34 #include <assert.h>
35 #include <debug.h>
36 #include <errno.h>
37 #include <mmio.h>
38 #include <platform.h>
39 #include <plat_arm.h>
40 #include <psci.h>
41 #include <v2m_def.h>
42 #include "drivers/pwrc/fvp_pwrc.h"
43 #include "fvp_def.h"
44 #include "fvp_private.h"
45 
46 
47 #if ARM_RECOM_STATE_ID_ENC
48 /*
49  *  The table storing the valid idle power states. Ensure that the
50  *  array entries are populated in ascending order of state-id to
51  *  enable us to use binary search during power state validation.
52  *  The table must be terminated by a NULL entry.
53  */
54 const unsigned int arm_pm_idle_states[] = {
55 	/* State-id - 0x01 */
56 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_RET,
57 			ARM_PWR_LVL0, PSTATE_TYPE_STANDBY),
58 	/* State-id - 0x02 */
59 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_OFF,
60 			ARM_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
61 	/* State-id - 0x22 */
62 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
63 			ARM_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
64 	0,
65 };
66 #endif
67 
68 /*******************************************************************************
69  * Function which implements the common FVP specific operations to power down a
70  * cpu in response to a CPU_OFF or CPU_SUSPEND request.
71  ******************************************************************************/
72 static void fvp_cpu_pwrdwn_common(void)
73 {
74 	/* Prevent interrupts from spuriously waking up this cpu */
75 	arm_gic_cpuif_deactivate();
76 
77 	/* Program the power controller to power off this cpu. */
78 	fvp_pwrc_write_ppoffr(read_mpidr_el1());
79 }
80 
81 /*******************************************************************************
82  * Function which implements the common FVP specific operations to power down a
83  * cluster in response to a CPU_OFF or CPU_SUSPEND request.
84  ******************************************************************************/
85 static void fvp_cluster_pwrdwn_common(void)
86 {
87 	uint64_t mpidr = read_mpidr_el1();
88 
89 	/* Disable coherency if this cluster is to be turned off */
90 	fvp_cci_disable();
91 
92 	/* Program the power controller to turn the cluster off */
93 	fvp_pwrc_write_pcoffr(mpidr);
94 }
95 
96 /*******************************************************************************
97  * FVP handler called when a CPU is about to enter standby.
98  ******************************************************************************/
99 void fvp_cpu_standby(plat_local_state_t cpu_state)
100 {
101 
102 	assert(cpu_state == ARM_LOCAL_STATE_RET);
103 
104 	/*
105 	 * Enter standby state
106 	 * dsb is good practice before using wfi to enter low power states
107 	 */
108 	dsb();
109 	wfi();
110 }
111 
112 /*******************************************************************************
113  * FVP handler called when a power domain is about to be turned on. The
114  * mpidr determines the CPU to be turned on.
115  ******************************************************************************/
116 int fvp_pwr_domain_on(u_register_t mpidr)
117 {
118 	int rc = PSCI_E_SUCCESS;
119 	unsigned int psysr;
120 
121 	/*
122 	 * Ensure that we do not cancel an inflight power off request
123 	 * for the target cpu. That would leave it in a zombie wfi.
124 	 * Wait for it to power off, program the jump address for the
125 	 * target cpu and then program the power controller to turn
126 	 * that cpu on
127 	 */
128 	do {
129 		psysr = fvp_pwrc_read_psysr(mpidr);
130 	} while (psysr & PSYSR_AFF_L0);
131 
132 	fvp_pwrc_write_pponr(mpidr);
133 	return rc;
134 }
135 
136 /*******************************************************************************
137  * FVP handler called when a power domain is about to be turned off. The
138  * target_state encodes the power state that each level should transition to.
139  ******************************************************************************/
140 void fvp_pwr_domain_off(const psci_power_state_t *target_state)
141 {
142 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
143 					ARM_LOCAL_STATE_OFF);
144 
145 	/*
146 	 * If execution reaches this stage then this power domain will be
147 	 * suspended. Perform at least the cpu specific actions followed
148 	 * by the cluster specific operations if applicable.
149 	 */
150 	fvp_cpu_pwrdwn_common();
151 
152 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
153 					ARM_LOCAL_STATE_OFF)
154 		fvp_cluster_pwrdwn_common();
155 
156 }
157 
158 /*******************************************************************************
159  * FVP handler called when a power domain is about to be suspended. The
160  * target_state encodes the power state that each level should transition to.
161  ******************************************************************************/
162 void fvp_pwr_domain_suspend(const psci_power_state_t *target_state)
163 {
164 	unsigned long mpidr;
165 
166 	/*
167 	 * FVP has retention only at cpu level. Just return
168 	 * as nothing is to be done for retention.
169 	 */
170 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
171 					ARM_LOCAL_STATE_RET)
172 		return;
173 
174 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
175 					ARM_LOCAL_STATE_OFF);
176 
177 	/* Get the mpidr for this cpu */
178 	mpidr = read_mpidr_el1();
179 
180 	/* Program the power controller to enable wakeup interrupts. */
181 	fvp_pwrc_set_wen(mpidr);
182 
183 	/* Perform the common cpu specific operations */
184 	fvp_cpu_pwrdwn_common();
185 
186 	/* Perform the common cluster specific operations */
187 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
188 					ARM_LOCAL_STATE_OFF)
189 		fvp_cluster_pwrdwn_common();
190 }
191 
192 /*******************************************************************************
193  * FVP handler called when a power domain has just been powered on after
194  * being turned off earlier. The target_state encodes the low power state that
195  * each level has woken up from.
196  ******************************************************************************/
197 void fvp_pwr_domain_on_finish(const psci_power_state_t *target_state)
198 {
199 	unsigned long mpidr;
200 
201 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
202 					ARM_LOCAL_STATE_OFF);
203 
204 	/* Get the mpidr for this cpu */
205 	mpidr = read_mpidr_el1();
206 
207 	/* Perform the common cluster specific operations */
208 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
209 					ARM_LOCAL_STATE_OFF) {
210 		/*
211 		 * This CPU might have woken up whilst the cluster was
212 		 * attempting to power down. In this case the FVP power
213 		 * controller will have a pending cluster power off request
214 		 * which needs to be cleared by writing to the PPONR register.
215 		 * This prevents the power controller from interpreting a
216 		 * subsequent entry of this cpu into a simple wfi as a power
217 		 * down request.
218 		 */
219 		fvp_pwrc_write_pponr(mpidr);
220 
221 		/* Enable coherency if this cluster was off */
222 		fvp_cci_enable();
223 	}
224 
225 	/*
226 	 * Clear PWKUPR.WEN bit to ensure interrupts do not interfere
227 	 * with a cpu power down unless the bit is set again
228 	 */
229 	fvp_pwrc_clr_wen(mpidr);
230 
231 	/* Enable the gic cpu interface */
232 	arm_gic_cpuif_setup();
233 
234 	/* TODO: This setup is needed only after a cold boot */
235 	arm_gic_pcpu_distif_setup();
236 }
237 
238 /*******************************************************************************
239  * FVP handler called when a power domain has just been powered on after
240  * having been suspended earlier. The target_state encodes the low power state
241  * that each level has woken up from.
242  * TODO: At the moment we reuse the on finisher and reinitialize the secure
243  * context. Need to implement a separate suspend finisher.
244  ******************************************************************************/
245 void fvp_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
246 {
247 	/*
248 	 * Nothing to be done on waking up from retention from CPU level.
249 	 */
250 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
251 					ARM_LOCAL_STATE_RET)
252 		return;
253 
254 	fvp_pwr_domain_on_finish(target_state);
255 }
256 
257 /*******************************************************************************
258  * FVP handlers to shutdown/reboot the system
259  ******************************************************************************/
260 static void __dead2 fvp_system_off(void)
261 {
262 	/* Write the System Configuration Control Register */
263 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
264 		V2M_CFGCTRL_START |
265 		V2M_CFGCTRL_RW |
266 		V2M_CFGCTRL_FUNC(V2M_FUNC_SHUTDOWN));
267 	wfi();
268 	ERROR("FVP System Off: operation not handled.\n");
269 	panic();
270 }
271 
272 static void __dead2 fvp_system_reset(void)
273 {
274 	/* Write the System Configuration Control Register */
275 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
276 		V2M_CFGCTRL_START |
277 		V2M_CFGCTRL_RW |
278 		V2M_CFGCTRL_FUNC(V2M_FUNC_REBOOT));
279 	wfi();
280 	ERROR("FVP System Reset: operation not handled.\n");
281 	panic();
282 }
283 
284 /*******************************************************************************
285  * Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
286  * platform layer will take care of registering the handlers with PSCI.
287  ******************************************************************************/
288 const plat_psci_ops_t plat_arm_psci_pm_ops = {
289 	.cpu_standby = fvp_cpu_standby,
290 	.pwr_domain_on = fvp_pwr_domain_on,
291 	.pwr_domain_off = fvp_pwr_domain_off,
292 	.pwr_domain_suspend = fvp_pwr_domain_suspend,
293 	.pwr_domain_on_finish = fvp_pwr_domain_on_finish,
294 	.pwr_domain_suspend_finish = fvp_pwr_domain_suspend_finish,
295 	.system_off = fvp_system_off,
296 	.system_reset = fvp_system_reset,
297 	.validate_power_state = arm_validate_power_state,
298 	.validate_ns_entrypoint = arm_validate_ns_entrypoint
299 };
300