xref: /rk3399_ARM-atf/plat/arm/board/fvp/fvp_pm.c (revision 09d40e0e08283a249e7dce0e106c07c5141f9b7e)
1 /*
2  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <drivers/arm/gicv3.h>
13 #include <lib/extensions/spe.h>
14 #include <lib/mmio.h>
15 #include <lib/psci/psci.h>
16 #include <plat/common/platform.h>
17 
18 #include <arm_config.h>
19 #include <plat_arm.h>
20 #include <v2m_def.h>
21 
22 #include "../../../../drivers/arm/gic/v3/gicv3_private.h"
23 #include "drivers/pwrc/fvp_pwrc.h"
24 #include "fvp_def.h"
25 #include "fvp_private.h"
26 
27 
28 #if ARM_RECOM_STATE_ID_ENC
29 /*
30  *  The table storing the valid idle power states. Ensure that the
31  *  array entries are populated in ascending order of state-id to
32  *  enable us to use binary search during power state validation.
33  *  The table must be terminated by a NULL entry.
34  */
35 const unsigned int arm_pm_idle_states[] = {
36 	/* State-id - 0x01 */
37 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_RET,
38 			ARM_PWR_LVL0, PSTATE_TYPE_STANDBY),
39 	/* State-id - 0x02 */
40 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_OFF,
41 			ARM_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
42 	/* State-id - 0x22 */
43 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
44 			ARM_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
45 	/* State-id - 0x222 */
46 	arm_make_pwrstate_lvl2(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
47 		ARM_LOCAL_STATE_OFF, ARM_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
48 	0,
49 };
50 #endif
51 
52 /*******************************************************************************
53  * Function which implements the common FVP specific operations to power down a
54  * cluster in response to a CPU_OFF or CPU_SUSPEND request.
55  ******************************************************************************/
56 static void fvp_cluster_pwrdwn_common(void)
57 {
58 	uint64_t mpidr = read_mpidr_el1();
59 
60 #if ENABLE_SPE_FOR_LOWER_ELS
61 	/*
62 	 * On power down we need to disable statistical profiling extensions
63 	 * before exiting coherency.
64 	 */
65 	spe_disable();
66 #endif
67 
68 	/* Disable coherency if this cluster is to be turned off */
69 	fvp_interconnect_disable();
70 
71 	/* Program the power controller to turn the cluster off */
72 	fvp_pwrc_write_pcoffr(mpidr);
73 }
74 
75 /*
76  * Empty implementation of these hooks avoid setting the GICR_WAKER.Sleep bit
77  * on ARM GICv3 implementations on FVP. This is required, because FVP does not
78  * support SYSTEM_SUSPEND and it is `faked` in firmware. Hence, for wake up
79  * from `fake` system suspend the GIC must not be powered off.
80  */
81 void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num)
82 {}
83 
84 void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num)
85 {}
86 
87 static void fvp_power_domain_on_finish_common(const psci_power_state_t *target_state)
88 {
89 	unsigned long mpidr;
90 
91 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
92 					ARM_LOCAL_STATE_OFF);
93 
94 	/* Get the mpidr for this cpu */
95 	mpidr = read_mpidr_el1();
96 
97 	/* Perform the common cluster specific operations */
98 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
99 					ARM_LOCAL_STATE_OFF) {
100 		/*
101 		 * This CPU might have woken up whilst the cluster was
102 		 * attempting to power down. In this case the FVP power
103 		 * controller will have a pending cluster power off request
104 		 * which needs to be cleared by writing to the PPONR register.
105 		 * This prevents the power controller from interpreting a
106 		 * subsequent entry of this cpu into a simple wfi as a power
107 		 * down request.
108 		 */
109 		fvp_pwrc_write_pponr(mpidr);
110 
111 		/* Enable coherency if this cluster was off */
112 		fvp_interconnect_enable();
113 	}
114 	/* Perform the common system specific operations */
115 	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
116 						ARM_LOCAL_STATE_OFF)
117 		arm_system_pwr_domain_resume();
118 
119 	/*
120 	 * Clear PWKUPR.WEN bit to ensure interrupts do not interfere
121 	 * with a cpu power down unless the bit is set again
122 	 */
123 	fvp_pwrc_clr_wen(mpidr);
124 }
125 
126 
127 /*******************************************************************************
128  * FVP handler called when a CPU is about to enter standby.
129  ******************************************************************************/
130 static void fvp_cpu_standby(plat_local_state_t cpu_state)
131 {
132 
133 	assert(cpu_state == ARM_LOCAL_STATE_RET);
134 
135 	/*
136 	 * Enter standby state
137 	 * dsb is good practice before using wfi to enter low power states
138 	 */
139 	dsb();
140 	wfi();
141 }
142 
143 /*******************************************************************************
144  * FVP handler called when a power domain is about to be turned on. The
145  * mpidr determines the CPU to be turned on.
146  ******************************************************************************/
147 static int fvp_pwr_domain_on(u_register_t mpidr)
148 {
149 	int rc = PSCI_E_SUCCESS;
150 	unsigned int psysr;
151 
152 	/*
153 	 * Ensure that we do not cancel an inflight power off request for the
154 	 * target cpu. That would leave it in a zombie wfi. Wait for it to power
155 	 * off and then program the power controller to turn that CPU on.
156 	 */
157 	do {
158 		psysr = fvp_pwrc_read_psysr(mpidr);
159 	} while ((psysr & PSYSR_AFF_L0) != 0U);
160 
161 	fvp_pwrc_write_pponr(mpidr);
162 	return rc;
163 }
164 
165 /*******************************************************************************
166  * FVP handler called when a power domain is about to be turned off. The
167  * target_state encodes the power state that each level should transition to.
168  ******************************************************************************/
169 static void fvp_pwr_domain_off(const psci_power_state_t *target_state)
170 {
171 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
172 					ARM_LOCAL_STATE_OFF);
173 
174 	/*
175 	 * If execution reaches this stage then this power domain will be
176 	 * suspended. Perform at least the cpu specific actions followed
177 	 * by the cluster specific operations if applicable.
178 	 */
179 
180 	/* Prevent interrupts from spuriously waking up this cpu */
181 	plat_arm_gic_cpuif_disable();
182 
183 	/* Turn redistributor off */
184 	plat_arm_gic_redistif_off();
185 
186 	/* Program the power controller to power off this cpu. */
187 	fvp_pwrc_write_ppoffr(read_mpidr_el1());
188 
189 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
190 					ARM_LOCAL_STATE_OFF)
191 		fvp_cluster_pwrdwn_common();
192 
193 }
194 
195 /*******************************************************************************
196  * FVP handler called when a power domain is about to be suspended. The
197  * target_state encodes the power state that each level should transition to.
198  ******************************************************************************/
199 static void fvp_pwr_domain_suspend(const psci_power_state_t *target_state)
200 {
201 	unsigned long mpidr;
202 
203 	/*
204 	 * FVP has retention only at cpu level. Just return
205 	 * as nothing is to be done for retention.
206 	 */
207 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
208 					ARM_LOCAL_STATE_RET)
209 		return;
210 
211 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
212 					ARM_LOCAL_STATE_OFF);
213 
214 	/* Get the mpidr for this cpu */
215 	mpidr = read_mpidr_el1();
216 
217 	/* Program the power controller to enable wakeup interrupts. */
218 	fvp_pwrc_set_wen(mpidr);
219 
220 	/* Prevent interrupts from spuriously waking up this cpu */
221 	plat_arm_gic_cpuif_disable();
222 
223 	/*
224 	 * The Redistributor is not powered off as it can potentially prevent
225 	 * wake up events reaching the CPUIF and/or might lead to losing
226 	 * register context.
227 	 */
228 
229 	/* Perform the common cluster specific operations */
230 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
231 					ARM_LOCAL_STATE_OFF)
232 		fvp_cluster_pwrdwn_common();
233 
234 	/* Perform the common system specific operations */
235 	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
236 						ARM_LOCAL_STATE_OFF)
237 		arm_system_pwr_domain_save();
238 
239 	/* Program the power controller to power off this cpu. */
240 	fvp_pwrc_write_ppoffr(read_mpidr_el1());
241 }
242 
243 /*******************************************************************************
244  * FVP handler called when a power domain has just been powered on after
245  * being turned off earlier. The target_state encodes the low power state that
246  * each level has woken up from.
247  ******************************************************************************/
248 static void fvp_pwr_domain_on_finish(const psci_power_state_t *target_state)
249 {
250 	fvp_power_domain_on_finish_common(target_state);
251 
252 	/* Enable the gic cpu interface */
253 	plat_arm_gic_pcpu_init();
254 
255 	/* Program the gic per-cpu distributor or re-distributor interface */
256 	plat_arm_gic_cpuif_enable();
257 }
258 
259 /*******************************************************************************
260  * FVP handler called when a power domain has just been powered on after
261  * having been suspended earlier. The target_state encodes the low power state
262  * that each level has woken up from.
263  * TODO: At the moment we reuse the on finisher and reinitialize the secure
264  * context. Need to implement a separate suspend finisher.
265  ******************************************************************************/
266 static void fvp_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
267 {
268 	/*
269 	 * Nothing to be done on waking up from retention from CPU level.
270 	 */
271 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
272 					ARM_LOCAL_STATE_RET)
273 		return;
274 
275 	fvp_power_domain_on_finish_common(target_state);
276 
277 	/* Enable the gic cpu interface */
278 	plat_arm_gic_cpuif_enable();
279 }
280 
281 /*******************************************************************************
282  * FVP handlers to shutdown/reboot the system
283  ******************************************************************************/
284 static void __dead2 fvp_system_off(void)
285 {
286 	/* Write the System Configuration Control Register */
287 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
288 		V2M_CFGCTRL_START |
289 		V2M_CFGCTRL_RW |
290 		V2M_CFGCTRL_FUNC(V2M_FUNC_SHUTDOWN));
291 	wfi();
292 	ERROR("FVP System Off: operation not handled.\n");
293 	panic();
294 }
295 
296 static void __dead2 fvp_system_reset(void)
297 {
298 	/* Write the System Configuration Control Register */
299 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
300 		V2M_CFGCTRL_START |
301 		V2M_CFGCTRL_RW |
302 		V2M_CFGCTRL_FUNC(V2M_FUNC_REBOOT));
303 	wfi();
304 	ERROR("FVP System Reset: operation not handled.\n");
305 	panic();
306 }
307 
308 static int fvp_node_hw_state(u_register_t target_cpu,
309 			     unsigned int power_level)
310 {
311 	unsigned int psysr;
312 	int ret;
313 
314 	/*
315 	 * The format of 'power_level' is implementation-defined, but 0 must
316 	 * mean a CPU. We also allow 1 to denote the cluster
317 	 */
318 	if ((power_level != ARM_PWR_LVL0) && (power_level != ARM_PWR_LVL1))
319 		return PSCI_E_INVALID_PARAMS;
320 
321 	/*
322 	 * Read the status of the given MPDIR from FVP power controller. The
323 	 * power controller only gives us on/off status, so map that to expected
324 	 * return values of the PSCI call
325 	 */
326 	psysr = fvp_pwrc_read_psysr(target_cpu);
327 	if (psysr == PSYSR_INVALID)
328 		return PSCI_E_INVALID_PARAMS;
329 
330 	if (power_level == ARM_PWR_LVL0) {
331 		ret = ((psysr & PSYSR_AFF_L0) != 0U) ? HW_ON : HW_OFF;
332 	} else {
333 		/* power_level == ARM_PWR_LVL1 */
334 		ret = ((psysr & PSYSR_AFF_L1) != 0U) ? HW_ON : HW_OFF;
335 	}
336 
337 	return ret;
338 }
339 
340 /*
341  * The FVP doesn't truly support power management at SYSTEM power domain. The
342  * SYSTEM_SUSPEND will be down-graded to the cluster level within the platform
343  * layer. The `fake` SYSTEM_SUSPEND allows us to validate some of the driver
344  * save and restore sequences on FVP.
345  */
346 #if !ARM_BL31_IN_DRAM
347 static void fvp_get_sys_suspend_power_state(psci_power_state_t *req_state)
348 {
349 	unsigned int i;
350 
351 	for (i = ARM_PWR_LVL0; i <= PLAT_MAX_PWR_LVL; i++)
352 		req_state->pwr_domain_state[i] = ARM_LOCAL_STATE_OFF;
353 }
354 #endif
355 
356 /*******************************************************************************
357  * Handler to filter PSCI requests.
358  ******************************************************************************/
359 /*
360  * The system power domain suspend is only supported only via
361  * PSCI SYSTEM_SUSPEND API. PSCI CPU_SUSPEND request to system power domain
362  * will be downgraded to the lower level.
363  */
364 static int fvp_validate_power_state(unsigned int power_state,
365 			    psci_power_state_t *req_state)
366 {
367 	int rc;
368 	rc = arm_validate_power_state(power_state, req_state);
369 
370 	/*
371 	 * Ensure that the system power domain level is never suspended
372 	 * via PSCI CPU SUSPEND API. Currently system suspend is only
373 	 * supported via PSCI SYSTEM SUSPEND API.
374 	 */
375 	req_state->pwr_domain_state[ARM_PWR_LVL2] = ARM_LOCAL_STATE_RUN;
376 	return rc;
377 }
378 
379 /*
380  * Custom `translate_power_state_by_mpidr` handler for FVP. Unlike in the
381  * `fvp_validate_power_state`, we do not downgrade the system power
382  * domain level request in `power_state` as it will be used to query the
383  * PSCI_STAT_COUNT/RESIDENCY at the system power domain level.
384  */
385 static int fvp_translate_power_state_by_mpidr(u_register_t mpidr,
386 		unsigned int power_state,
387 		psci_power_state_t *output_state)
388 {
389 	return arm_validate_power_state(power_state, output_state);
390 }
391 
392 /*******************************************************************************
393  * Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
394  * platform layer will take care of registering the handlers with PSCI.
395  ******************************************************************************/
396 plat_psci_ops_t plat_arm_psci_pm_ops = {
397 	.cpu_standby = fvp_cpu_standby,
398 	.pwr_domain_on = fvp_pwr_domain_on,
399 	.pwr_domain_off = fvp_pwr_domain_off,
400 	.pwr_domain_suspend = fvp_pwr_domain_suspend,
401 	.pwr_domain_on_finish = fvp_pwr_domain_on_finish,
402 	.pwr_domain_suspend_finish = fvp_pwr_domain_suspend_finish,
403 	.system_off = fvp_system_off,
404 	.system_reset = fvp_system_reset,
405 	.validate_power_state = fvp_validate_power_state,
406 	.validate_ns_entrypoint = arm_validate_psci_entrypoint,
407 	.translate_power_state_by_mpidr = fvp_translate_power_state_by_mpidr,
408 	.get_node_hw_state = fvp_node_hw_state,
409 #if !ARM_BL31_IN_DRAM
410 	/*
411 	 * The TrustZone Controller is set up during the warmboot sequence after
412 	 * resuming the CPU from a SYSTEM_SUSPEND. If BL31 is located in SRAM
413 	 * this is  not a problem but, if it is in TZC-secured DRAM, it tries to
414 	 * reconfigure the same memory it is running on, causing an exception.
415 	 */
416 	.get_sys_suspend_power_state = fvp_get_sys_suspend_power_state,
417 #endif
418 	.mem_protect_chk	= arm_psci_mem_protect_chk,
419 	.read_mem_protect	= arm_psci_read_mem_protect,
420 	.write_mem_protect	= arm_nor_psci_write_mem_protect,
421 };
422 
423 const plat_psci_ops_t *plat_arm_psci_override_pm_ops(plat_psci_ops_t *ops)
424 {
425 	return ops;
426 }
427