xref: /rk3399_ARM-atf/plat/arm/board/fvp/fvp_pm.c (revision 023f1bed1dde23564e3b66a99c4a45b09e38992b)
1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch_features.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <drivers/arm/gicv3.h>
13 #include <drivers/arm/fvp/fvp_pwrc.h>
14 #include <lib/extensions/spe.h>
15 #include <lib/mmio.h>
16 #include <lib/psci/psci.h>
17 #include <plat/arm/common/arm_config.h>
18 #include <plat/arm/common/plat_arm.h>
19 #include <platform_def.h>
20 
21 #include "fvp_private.h"
22 #include "../drivers/arm/gic/v3/gicv3_private.h"
23 
24 
25 #if ARM_RECOM_STATE_ID_ENC
26 /*
27  *  The table storing the valid idle power states. Ensure that the
28  *  array entries are populated in ascending order of state-id to
29  *  enable us to use binary search during power state validation.
30  *  The table must be terminated by a NULL entry.
31  */
32 const unsigned int arm_pm_idle_states[] = {
33 	/* State-id - 0x01 */
34 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_RET,
35 			ARM_PWR_LVL0, PSTATE_TYPE_STANDBY),
36 	/* State-id - 0x02 */
37 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_OFF,
38 			ARM_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
39 	/* State-id - 0x22 */
40 	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
41 			ARM_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
42 	/* State-id - 0x222 */
43 	arm_make_pwrstate_lvl2(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
44 		ARM_LOCAL_STATE_OFF, ARM_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
45 	0,
46 };
47 #endif
48 
49 /*******************************************************************************
50  * Function which implements the common FVP specific operations to power down a
51  * cluster in response to a CPU_OFF or CPU_SUSPEND request.
52  ******************************************************************************/
53 static void fvp_cluster_pwrdwn_common(void)
54 {
55 	uint64_t mpidr = read_mpidr_el1();
56 
57 	/*
58 	 * On power down we need to disable statistical profiling extensions
59 	 * before exiting coherency.
60 	 */
61 	if (is_feat_spe_supported()) {
62 		spe_disable();
63 	}
64 
65 	/* Disable coherency if this cluster is to be turned off */
66 	fvp_interconnect_disable();
67 
68 #if HW_ASSISTED_COHERENCY
69 	uint32_t reg;
70 
71 	/*
72 	 * If we have determined this core to be the last man standing and we
73 	 * intend to power down the cluster proactively, we provide a hint to
74 	 * the power controller that cluster power is not required when all
75 	 * cores are powered down.
76 	 * Note that this is only an advisory to power controller and is supported
77 	 * by SoCs with DynamIQ Shared Units only.
78 	 */
79 	reg = read_clusterpwrdn();
80 
81 	/* Clear and set bit 0 : Cluster power not required */
82 	reg &= ~DSU_CLUSTER_PWR_MASK;
83 	reg |= DSU_CLUSTER_PWR_OFF;
84 	write_clusterpwrdn(reg);
85 #endif
86 
87 	/* Program the power controller to turn the cluster off */
88 	fvp_pwrc_write_pcoffr(mpidr);
89 }
90 
91 /*
92  * Empty implementation of these hooks avoid setting the GICR_WAKER.Sleep bit
93  * on ARM GICv3 implementations on FVP. This is required, because FVP does not
94  * support SYSTEM_SUSPEND and it is `faked` in firmware. Hence, for wake up
95  * from `fake` system suspend the GIC must not be powered off.
96  */
97 void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num)
98 {}
99 
100 void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num)
101 {}
102 
103 static void fvp_power_domain_on_finish_common(const psci_power_state_t *target_state)
104 {
105 	unsigned long mpidr;
106 
107 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
108 					ARM_LOCAL_STATE_OFF);
109 
110 	/* Get the mpidr for this cpu */
111 	mpidr = read_mpidr_el1();
112 
113 	/* Perform the common cluster specific operations */
114 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
115 					ARM_LOCAL_STATE_OFF) {
116 		/*
117 		 * This CPU might have woken up whilst the cluster was
118 		 * attempting to power down. In this case the FVP power
119 		 * controller will have a pending cluster power off request
120 		 * which needs to be cleared by writing to the PPONR register.
121 		 * This prevents the power controller from interpreting a
122 		 * subsequent entry of this cpu into a simple wfi as a power
123 		 * down request.
124 		 */
125 		fvp_pwrc_write_pponr(mpidr);
126 
127 		/* Enable coherency if this cluster was off */
128 		fvp_interconnect_enable();
129 	}
130 	/* Perform the common system specific operations */
131 	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
132 						ARM_LOCAL_STATE_OFF)
133 		arm_system_pwr_domain_resume();
134 
135 	/*
136 	 * Clear PWKUPR.WEN bit to ensure interrupts do not interfere
137 	 * with a cpu power down unless the bit is set again
138 	 */
139 	fvp_pwrc_clr_wen(mpidr);
140 }
141 
142 /*******************************************************************************
143  * FVP handler called when a CPU is about to enter standby.
144  ******************************************************************************/
145 static void fvp_cpu_standby(plat_local_state_t cpu_state)
146 {
147 	u_register_t scr = read_scr_el3();
148 
149 	assert(cpu_state == ARM_LOCAL_STATE_RET);
150 
151 	/*
152 	 * Enable the Non-secure interrupt to wake the CPU.
153 	 * In GICv3 affinity routing mode, the Non-secure Group 1 interrupts
154 	 * use Physical FIQ at EL3 whereas in GICv2, Physical IRQ is used.
155 	 * Enabling both the bits works for both GICv2 mode and GICv3 affinity
156 	 * routing mode.
157 	 */
158 	write_scr_el3(scr | SCR_IRQ_BIT | SCR_FIQ_BIT);
159 	isb();
160 
161 	/*
162 	 * Enter standby state.
163 	 * dsb is good practice before using wfi to enter low power states.
164 	 */
165 	dsb();
166 	wfi();
167 
168 	/*
169 	 * Restore SCR_EL3 to the original value, synchronisation of SCR_EL3
170 	 * is done by eret in el3_exit() to save some execution cycles.
171 	 */
172 	write_scr_el3(scr);
173 }
174 
175 /*******************************************************************************
176  * FVP handler called when a power domain is about to be turned on. The
177  * mpidr determines the CPU to be turned on.
178  ******************************************************************************/
179 static int fvp_pwr_domain_on(u_register_t mpidr)
180 {
181 	int rc = PSCI_E_SUCCESS;
182 	unsigned int psysr;
183 
184 	/*
185 	 * Ensure that we do not cancel an inflight power off request for the
186 	 * target cpu. That would leave it in a zombie wfi. Wait for it to power
187 	 * off and then program the power controller to turn that CPU on.
188 	 */
189 	do {
190 		psysr = fvp_pwrc_read_psysr(mpidr);
191 	} while ((psysr & PSYSR_AFF_L0) != 0U);
192 
193 	fvp_pwrc_write_pponr(mpidr);
194 	return rc;
195 }
196 
197 /*******************************************************************************
198  * FVP handler called when a power domain is about to be turned off. The
199  * target_state encodes the power state that each level should transition to.
200  ******************************************************************************/
201 static void fvp_pwr_domain_off(const psci_power_state_t *target_state)
202 {
203 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
204 					ARM_LOCAL_STATE_OFF);
205 
206 	/*
207 	 * If execution reaches this stage then this power domain will be
208 	 * suspended. Perform at least the cpu specific actions followed
209 	 * by the cluster specific operations if applicable.
210 	 */
211 
212 	/* Prevent interrupts from spuriously waking up this cpu */
213 	plat_arm_gic_cpuif_disable();
214 
215 	/* Turn redistributor off */
216 	plat_arm_gic_redistif_off();
217 
218 	/* Program the power controller to power off this cpu. */
219 	fvp_pwrc_write_ppoffr(read_mpidr_el1());
220 
221 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
222 					ARM_LOCAL_STATE_OFF)
223 		fvp_cluster_pwrdwn_common();
224 
225 }
226 
227 /*******************************************************************************
228  * FVP handler called when a power domain is about to be suspended. The
229  * target_state encodes the power state that each level should transition to.
230  ******************************************************************************/
231 static void fvp_pwr_domain_suspend(const psci_power_state_t *target_state)
232 {
233 	unsigned long mpidr;
234 
235 	/*
236 	 * FVP has retention only at cpu level. Just return
237 	 * as nothing is to be done for retention.
238 	 */
239 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
240 					ARM_LOCAL_STATE_RET)
241 		return;
242 
243 	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
244 					ARM_LOCAL_STATE_OFF);
245 
246 	/* Get the mpidr for this cpu */
247 	mpidr = read_mpidr_el1();
248 
249 	/* Program the power controller to enable wakeup interrupts. */
250 	fvp_pwrc_set_wen(mpidr);
251 
252 	/* Prevent interrupts from spuriously waking up this cpu */
253 	plat_arm_gic_cpuif_disable();
254 
255 	/*
256 	 * The Redistributor is not powered off as it can potentially prevent
257 	 * wake up events reaching the CPUIF and/or might lead to losing
258 	 * register context.
259 	 */
260 
261 	/* Perform the common cluster specific operations */
262 	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
263 					ARM_LOCAL_STATE_OFF)
264 		fvp_cluster_pwrdwn_common();
265 
266 	/* Perform the common system specific operations */
267 	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
268 						ARM_LOCAL_STATE_OFF)
269 		arm_system_pwr_domain_save();
270 
271 	/* Program the power controller to power off this cpu. */
272 	fvp_pwrc_write_ppoffr(read_mpidr_el1());
273 }
274 
275 /*******************************************************************************
276  * FVP handler called when a power domain has just been powered on after
277  * being turned off earlier. The target_state encodes the low power state that
278  * each level has woken up from.
279  ******************************************************************************/
280 static void fvp_pwr_domain_on_finish(const psci_power_state_t *target_state)
281 {
282 	fvp_power_domain_on_finish_common(target_state);
283 
284 }
285 
286 /*******************************************************************************
287  * FVP handler called when a power domain has just been powered on and the cpu
288  * and its cluster are fully participating in coherent transaction on the
289  * interconnect. Data cache must be enabled for CPU at this point.
290  ******************************************************************************/
291 static void fvp_pwr_domain_on_finish_late(const psci_power_state_t *target_state)
292 {
293 	/* Program GIC per-cpu distributor or re-distributor interface */
294 	plat_arm_gic_pcpu_init();
295 
296 	/* Enable GIC CPU interface */
297 	plat_arm_gic_cpuif_enable();
298 }
299 
300 /*******************************************************************************
301  * FVP handler called when a power domain has just been powered on after
302  * having been suspended earlier. The target_state encodes the low power state
303  * that each level has woken up from.
304  * TODO: At the moment we reuse the on finisher and reinitialize the secure
305  * context. Need to implement a separate suspend finisher.
306  ******************************************************************************/
307 static void fvp_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
308 {
309 	/*
310 	 * Nothing to be done on waking up from retention from CPU level.
311 	 */
312 	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
313 					ARM_LOCAL_STATE_RET)
314 		return;
315 
316 	fvp_power_domain_on_finish_common(target_state);
317 
318 	/* Enable GIC CPU interface */
319 	plat_arm_gic_cpuif_enable();
320 }
321 
322 /*******************************************************************************
323  * FVP handlers to shutdown/reboot the system
324  ******************************************************************************/
325 static void __dead2 fvp_system_off(void)
326 {
327 	/* Write the System Configuration Control Register */
328 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
329 		V2M_CFGCTRL_START |
330 		V2M_CFGCTRL_RW |
331 		V2M_CFGCTRL_FUNC(V2M_FUNC_SHUTDOWN));
332 	wfi();
333 	ERROR("FVP System Off: operation not handled.\n");
334 	panic();
335 }
336 
337 static void __dead2 fvp_system_reset(void)
338 {
339 	/* Write the System Configuration Control Register */
340 	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
341 		V2M_CFGCTRL_START |
342 		V2M_CFGCTRL_RW |
343 		V2M_CFGCTRL_FUNC(V2M_FUNC_REBOOT));
344 	wfi();
345 	ERROR("FVP System Reset: operation not handled.\n");
346 	panic();
347 }
348 
349 static int fvp_node_hw_state(u_register_t target_cpu,
350 			     unsigned int power_level)
351 {
352 	unsigned int psysr;
353 	int ret;
354 
355 	/*
356 	 * The format of 'power_level' is implementation-defined, but 0 must
357 	 * mean a CPU. We also allow 1 to denote the cluster
358 	 */
359 	if ((power_level != ARM_PWR_LVL0) && (power_level != ARM_PWR_LVL1))
360 		return PSCI_E_INVALID_PARAMS;
361 
362 	/*
363 	 * Read the status of the given MPDIR from FVP power controller. The
364 	 * power controller only gives us on/off status, so map that to expected
365 	 * return values of the PSCI call
366 	 */
367 	psysr = fvp_pwrc_read_psysr(target_cpu);
368 	if (psysr == PSYSR_INVALID)
369 		return PSCI_E_INVALID_PARAMS;
370 
371 	if (power_level == ARM_PWR_LVL0) {
372 		ret = ((psysr & PSYSR_AFF_L0) != 0U) ? HW_ON : HW_OFF;
373 	} else {
374 		/* power_level == ARM_PWR_LVL1 */
375 		ret = ((psysr & PSYSR_AFF_L1) != 0U) ? HW_ON : HW_OFF;
376 	}
377 
378 	return ret;
379 }
380 
381 /*
382  * The FVP doesn't truly support power management at SYSTEM power domain. The
383  * SYSTEM_SUSPEND will be down-graded to the cluster level within the platform
384  * layer. The `fake` SYSTEM_SUSPEND allows us to validate some of the driver
385  * save and restore sequences on FVP.
386  */
387 #if !ARM_BL31_IN_DRAM
388 static void fvp_get_sys_suspend_power_state(psci_power_state_t *req_state)
389 {
390 	unsigned int i;
391 
392 	for (i = ARM_PWR_LVL0; i <= PLAT_MAX_PWR_LVL; i++)
393 		req_state->pwr_domain_state[i] = ARM_LOCAL_STATE_OFF;
394 }
395 #endif
396 
397 /*******************************************************************************
398  * Handler to filter PSCI requests.
399  ******************************************************************************/
400 /*
401  * The system power domain suspend is only supported only via
402  * PSCI SYSTEM_SUSPEND API. PSCI CPU_SUSPEND request to system power domain
403  * will be downgraded to the lower level.
404  */
405 static int fvp_validate_power_state(unsigned int power_state,
406 			    psci_power_state_t *req_state)
407 {
408 	int rc;
409 	rc = arm_validate_power_state(power_state, req_state);
410 
411 	/*
412 	 * Ensure that the system power domain level is never suspended
413 	 * via PSCI CPU SUSPEND API. Currently system suspend is only
414 	 * supported via PSCI SYSTEM SUSPEND API.
415 	 */
416 	req_state->pwr_domain_state[ARM_PWR_LVL2] = ARM_LOCAL_STATE_RUN;
417 	return rc;
418 }
419 
420 /*
421  * Custom `translate_power_state_by_mpidr` handler for FVP. Unlike in the
422  * `fvp_validate_power_state`, we do not downgrade the system power
423  * domain level request in `power_state` as it will be used to query the
424  * PSCI_STAT_COUNT/RESIDENCY at the system power domain level.
425  */
426 static int fvp_translate_power_state_by_mpidr(u_register_t mpidr,
427 		unsigned int power_state,
428 		psci_power_state_t *output_state)
429 {
430 	return arm_validate_power_state(power_state, output_state);
431 }
432 
433 /*******************************************************************************
434  * Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
435  * platform layer will take care of registering the handlers with PSCI.
436  ******************************************************************************/
437 plat_psci_ops_t plat_arm_psci_pm_ops = {
438 	.cpu_standby = fvp_cpu_standby,
439 	.pwr_domain_on = fvp_pwr_domain_on,
440 	.pwr_domain_off = fvp_pwr_domain_off,
441 	.pwr_domain_suspend = fvp_pwr_domain_suspend,
442 	.pwr_domain_on_finish = fvp_pwr_domain_on_finish,
443 	.pwr_domain_on_finish_late = fvp_pwr_domain_on_finish_late,
444 	.pwr_domain_suspend_finish = fvp_pwr_domain_suspend_finish,
445 	.system_off = fvp_system_off,
446 	.system_reset = fvp_system_reset,
447 	.validate_power_state = fvp_validate_power_state,
448 	.validate_ns_entrypoint = arm_validate_psci_entrypoint,
449 	.translate_power_state_by_mpidr = fvp_translate_power_state_by_mpidr,
450 	.get_node_hw_state = fvp_node_hw_state,
451 #if !ARM_BL31_IN_DRAM
452 	/*
453 	 * The TrustZone Controller is set up during the warmboot sequence after
454 	 * resuming the CPU from a SYSTEM_SUSPEND. If BL31 is located in SRAM
455 	 * this is  not a problem but, if it is in TZC-secured DRAM, it tries to
456 	 * reconfigure the same memory it is running on, causing an exception.
457 	 */
458 	.get_sys_suspend_power_state = fvp_get_sys_suspend_power_state,
459 #endif
460 	.mem_protect_chk	= arm_psci_mem_protect_chk,
461 	.read_mem_protect	= arm_psci_read_mem_protect,
462 	.write_mem_protect	= arm_nor_psci_write_mem_protect,
463 };
464 
465 const plat_psci_ops_t *plat_arm_psci_override_pm_ops(plat_psci_ops_t *ops)
466 {
467 	return ops;
468 }
469