xref: /rk3399_ARM-atf/plat/allwinner/sun50i_a64/sunxi_power.c (revision fb4e97868d996c6574147f318077bcba4f6c8e6b)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2018, Icenowy Zheng <icenowy@aosc.io>
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <allwinner/sunxi_rsb.h>
9 #include <arch_helpers.h>
10 #include <debug.h>
11 #include <delay_timer.h>
12 #include <errno.h>
13 #include <libfdt.h>
14 #include <mmio.h>
15 #include <platform_def.h>
16 #include <sunxi_def.h>
17 #include <sunxi_mmap.h>
18 #include <sunxi_private.h>
19 
20 static enum pmic_type {
21 	GENERIC_H5,
22 	GENERIC_A64,
23 	REF_DESIGN_H5,	/* regulators controlled by GPIO pins on port L */
24 	AXP803_RSB,	/* PMIC connected via RSB on most A64 boards */
25 } pmic;
26 
27 #define AXP803_HW_ADDR	0x3a3
28 #define AXP803_RT_ADDR	0x2d
29 
30 /*
31  * On boards without a proper PMIC we struggle to turn off the system properly.
32  * Try to turn off as much off the system as we can, to reduce power
33  * consumption. This should be entered with only one core running and SMP
34  * disabled.
35  * This function only cares about peripherals.
36  */
37 void sunxi_turn_off_soc(uint16_t socid)
38 {
39 	int i;
40 
41 	/** Turn off most peripherals, most importantly DRAM users. **/
42 	/* Keep DRAM controller running for now. */
43 	mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, ~BIT_32(14));
44 	mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, ~BIT_32(14));
45 	/* Contains msgbox (bit 21) and spinlock (bit 22) */
46 	mmio_write_32(SUNXI_CCU_BASE + 0x2c4, 0);
47 	mmio_write_32(SUNXI_CCU_BASE + 0x64, 0);
48 	mmio_write_32(SUNXI_CCU_BASE + 0x2c8, 0);
49 	/* Keep PIO controller running for now. */
50 	mmio_clrbits_32(SUNXI_CCU_BASE + 0x68, ~(BIT_32(5)));
51 	mmio_write_32(SUNXI_CCU_BASE + 0x2d0, 0);
52 	/* Contains UART0 (bit 16) */
53 	mmio_write_32(SUNXI_CCU_BASE + 0x2d8, 0);
54 	mmio_write_32(SUNXI_CCU_BASE + 0x6c, 0);
55 	mmio_write_32(SUNXI_CCU_BASE + 0x70, 0);
56 
57 	/** Turn off DRAM controller. **/
58 	mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, BIT_32(14));
59 	mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, BIT_32(14));
60 
61 	/** Migrate CPU and bus clocks away from the PLLs. **/
62 	/* AHB1: use OSC24M/1, APB1 = AHB1 / 2 */
63 	mmio_write_32(SUNXI_CCU_BASE + 0x54, 0x1000);
64 	/* APB2: use OSC24M */
65 	mmio_write_32(SUNXI_CCU_BASE + 0x58, 0x1000000);
66 	/* AHB2: use AHB1 clock */
67 	mmio_write_32(SUNXI_CCU_BASE + 0x5c, 0);
68 	/* CPU: use OSC24M */
69 	mmio_write_32(SUNXI_CCU_BASE + 0x50, 0x10000);
70 
71 	/** Turn off PLLs. **/
72 	for (i = 0; i < 6; i++)
73 		mmio_clrbits_32(SUNXI_CCU_BASE + i * 8, BIT(31));
74 	switch (socid) {
75 	case SUNXI_SOC_H5:
76 		mmio_clrbits_32(SUNXI_CCU_BASE + 0x44, BIT(31));
77 		break;
78 	case SUNXI_SOC_A64:
79 		mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c, BIT(31));
80 		mmio_clrbits_32(SUNXI_CCU_BASE + 0x4c, BIT(31));
81 		break;
82 	}
83 }
84 
85 static int rsb_init(void)
86 {
87 	int ret;
88 
89 	ret = rsb_init_controller();
90 	if (ret)
91 		return ret;
92 
93 	/* Start with 400 KHz to issue the I2C->RSB switch command. */
94 	ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 400000);
95 	if (ret)
96 		return ret;
97 
98 	/*
99 	 * Initiate an I2C transaction to write 0x7c into register 0x3e,
100 	 * switching the PMIC to RSB mode.
101 	 */
102 	ret = rsb_set_device_mode(0x7c3e00);
103 	if (ret)
104 		return ret;
105 
106 	/* Now in RSB mode, switch to the recommended 3 MHz. */
107 	ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 3000000);
108 	if (ret)
109 		return ret;
110 
111 	/* Associate the 8-bit runtime address with the 12-bit bus address. */
112 	return rsb_assign_runtime_address(AXP803_HW_ADDR,
113 					  AXP803_RT_ADDR);
114 }
115 
116 static int axp_write(uint8_t reg, uint8_t val)
117 {
118 	return rsb_write(AXP803_RT_ADDR, reg, val);
119 }
120 
121 static int axp_setbits(uint8_t reg, uint8_t set_mask)
122 {
123 	uint8_t regval;
124 	int ret;
125 
126 	ret = rsb_read(AXP803_RT_ADDR, reg);
127 	if (ret < 0)
128 		return ret;
129 
130 	regval = ret | set_mask;
131 
132 	return rsb_write(AXP803_RT_ADDR, reg, regval);
133 }
134 
135 static bool should_enable_regulator(const void *fdt, int node)
136 {
137 	if (fdt_getprop(fdt, node, "phandle", NULL) != NULL)
138 		return true;
139 	if (fdt_getprop(fdt, node, "regulator-always-on", NULL) != NULL)
140 		return true;
141 	return false;
142 }
143 
144 /*
145  * Retrieve the voltage from a given regulator DTB node.
146  * Both the regulator-{min,max}-microvolt properties must be present and
147  * have the same value. Return that value in millivolts.
148  */
149 static int fdt_get_regulator_millivolt(const void *fdt, int node)
150 {
151 	const fdt32_t *prop;
152 	uint32_t min_volt;
153 
154 	prop = fdt_getprop(fdt, node, "regulator-min-microvolt", NULL);
155 	if (prop == NULL)
156 		return -EINVAL;
157 	min_volt = fdt32_to_cpu(*prop);
158 
159 	prop = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL);
160 	if (prop == NULL)
161 		return -EINVAL;
162 
163 	if (fdt32_to_cpu(*prop) != min_volt)
164 		return -EINVAL;
165 
166 	return min_volt / 1000;
167 }
168 
169 #define NO_SPLIT 0xff
170 
171 struct axp_regulator {
172 	char *dt_name;
173 	uint16_t min_volt;
174 	uint16_t max_volt;
175 	uint16_t step;
176 	unsigned char split;
177 	unsigned char volt_reg;
178 	unsigned char switch_reg;
179 	unsigned char switch_bit;
180 } regulators[] = {
181 	{"dcdc1", 1600, 3400, 100, NO_SPLIT, 0x20, 0xff, 9},
182 	{"dcdc5",  800, 1840,  10,       32, 0x24, 0xff, 9},
183 	{"dldo1",  700, 3300, 100, NO_SPLIT, 0x15, 0x12, 3},
184 	{"dldo2",  700, 4200, 100,       27, 0x16, 0x12, 4},
185 	{"dldo3",  700, 3300, 100, NO_SPLIT, 0x17, 0x12, 5},
186 	{"fldo1",  700, 1450,  50, NO_SPLIT, 0x1c, 0x13, 2},
187 	{}
188 };
189 
190 static int setup_regulator(const void *fdt, int node,
191 			   const struct axp_regulator *reg)
192 {
193 	int mvolt;
194 	uint8_t regval;
195 
196 	if (!should_enable_regulator(fdt, node))
197 		return -ENOENT;
198 
199 	mvolt = fdt_get_regulator_millivolt(fdt, node);
200 	if (mvolt < reg->min_volt || mvolt > reg->max_volt)
201 		return -EINVAL;
202 
203 	regval = (mvolt / reg->step) - (reg->min_volt / reg->step);
204 	if (regval > reg->split)
205 		regval = ((regval - reg->split) / 2) + reg->split;
206 
207 	axp_write(reg->volt_reg, regval);
208 	if (reg->switch_reg < 0xff)
209 		axp_setbits(reg->switch_reg, BIT(reg->switch_bit));
210 
211 	INFO("PMIC: AXP803: %s voltage: %d.%03dV\n", reg->dt_name,
212 	     mvolt / 1000, mvolt % 1000);
213 
214 	return 0;
215 }
216 
217 static void setup_axp803_rails(const void *fdt)
218 {
219 	int node;
220 
221 	/* locate the PMIC DT node, bail out if not found */
222 	node = fdt_node_offset_by_compatible(fdt, -1, "x-powers,axp803");
223 	if (node == -FDT_ERR_NOTFOUND) {
224 		WARN("BL31: PMIC: No AXP803 DT node, skipping initial setup.\n");
225 		return;
226 	}
227 
228 	if (fdt_getprop(fdt, node, "x-powers,drive-vbus-en", NULL))
229 		axp_setbits(0x8f, BIT(4));
230 
231 	/* descend into the "regulators" subnode */
232 	node = fdt_first_subnode(fdt, node);
233 
234 	/* iterate over all regulators to find used ones */
235 	for (node = fdt_first_subnode(fdt, node);
236 	     node != -FDT_ERR_NOTFOUND;
237 	     node = fdt_next_subnode(fdt, node)) {
238 		struct axp_regulator *reg;
239 		const char *name;
240 		int length;
241 
242 		/* We only care if it's always on or referenced. */
243 		if (!should_enable_regulator(fdt, node))
244 			continue;
245 
246 		name = fdt_get_name(fdt, node, &length);
247 		for (reg = regulators; reg->dt_name; reg++) {
248 			if (!strncmp(name, reg->dt_name, length)) {
249 				setup_regulator(fdt, node, reg);
250 				break;
251 			}
252 		}
253 
254 		if (!strncmp(name, "dc1sw", length)) {
255 			INFO("PMIC: AXP803: Enabling DC1SW\n");
256 			axp_setbits(0x12, BIT(7));
257 			continue;
258 		}
259 	}
260 }
261 
262 int sunxi_pmic_setup(uint16_t socid, const void *fdt)
263 {
264 	int ret;
265 
266 	switch (socid) {
267 	case SUNXI_SOC_H5:
268 		pmic = REF_DESIGN_H5;
269 		NOTICE("BL31: PMIC: Defaulting to PortL GPIO according to H5 reference design.\n");
270 		break;
271 	case SUNXI_SOC_A64:
272 		pmic = GENERIC_A64;
273 		ret = sunxi_init_platform_r_twi(socid, true);
274 		if (ret)
275 			return ret;
276 
277 		ret = rsb_init();
278 		if (ret)
279 			return ret;
280 
281 		pmic = AXP803_RSB;
282 		NOTICE("BL31: PMIC: Detected AXP803 on RSB.\n");
283 
284 		if (fdt)
285 			setup_axp803_rails(fdt);
286 
287 		break;
288 	default:
289 		NOTICE("BL31: PMIC: No support for Allwinner %x SoC.\n", socid);
290 		return -ENODEV;
291 	}
292 	return 0;
293 }
294 
295 void __dead2 sunxi_power_down(void)
296 {
297 	switch (pmic) {
298 	case GENERIC_H5:
299 		/* Turn off as many peripherals and clocks as we can. */
300 		sunxi_turn_off_soc(SUNXI_SOC_H5);
301 		/* Turn off the pin controller now. */
302 		mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
303 		break;
304 	case GENERIC_A64:
305 		/* Turn off as many peripherals and clocks as we can. */
306 		sunxi_turn_off_soc(SUNXI_SOC_A64);
307 		/* Turn off the pin controller now. */
308 		mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
309 		break;
310 	case REF_DESIGN_H5:
311 		sunxi_turn_off_soc(SUNXI_SOC_H5);
312 
313 		/*
314 		 * Switch PL pins to power off the board:
315 		 * - PL5 (VCC_IO) -> high
316 		 * - PL8 (PWR-STB = CPU power supply) -> low
317 		 * - PL9 (PWR-DRAM) ->low
318 		 * - PL10 (power LED) -> low
319 		 * Note: Clearing PL8 will reset the board, so keep it up.
320 		 */
321 		sunxi_set_gpio_out('L', 5, 1);
322 		sunxi_set_gpio_out('L', 9, 0);
323 		sunxi_set_gpio_out('L', 10, 0);
324 
325 		/* Turn off pin controller now. */
326 		mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
327 
328 		break;
329 	case AXP803_RSB:
330 		/* (Re-)init RSB in case the rich OS has disabled it. */
331 		sunxi_init_platform_r_twi(SUNXI_SOC_A64, true);
332 		rsb_init();
333 
334 		/* Set "power disable control" bit */
335 		axp_setbits(0x32, BIT(7));
336 		break;
337 	default:
338 		break;
339 	}
340 
341 	udelay(1000);
342 	ERROR("PSCI: Cannot turn off system, halting.\n");
343 	wfi();
344 	panic();
345 }
346