1 /* 2 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <debug.h> 9 #include <platform_def.h> 10 #include <xlat_tables_defs.h> 11 #include <xlat_tables_v2.h> 12 13 #include "xlat_tables_private.h" 14 15 /* 16 * Each platform can define the size of its physical and virtual address spaces. 17 * If the platform hasn't defined one or both of them, default to 18 * ADDR_SPACE_SIZE. The latter is deprecated, though. 19 */ 20 #if ERROR_DEPRECATED 21 # ifdef ADDR_SPACE_SIZE 22 # error "ADDR_SPACE_SIZE is deprecated. Use PLAT_xxx_ADDR_SPACE_SIZE instead." 23 # endif 24 #elif defined(ADDR_SPACE_SIZE) 25 # ifndef PLAT_PHY_ADDR_SPACE_SIZE 26 # define PLAT_PHY_ADDR_SPACE_SIZE ADDR_SPACE_SIZE 27 # endif 28 # ifndef PLAT_VIRT_ADDR_SPACE_SIZE 29 # define PLAT_VIRT_ADDR_SPACE_SIZE ADDR_SPACE_SIZE 30 # endif 31 #endif 32 33 /* 34 * Allocate and initialise the default translation context for the BL image 35 * currently executing. 36 */ 37 REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES, 38 PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE); 39 40 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size, 41 unsigned int attr) 42 { 43 mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); 44 45 mmap_add_region_ctx(&tf_xlat_ctx, &mm); 46 } 47 48 void mmap_add(const mmap_region_t *mm) 49 { 50 mmap_add_ctx(&tf_xlat_ctx, mm); 51 } 52 53 #if PLAT_XLAT_TABLES_DYNAMIC 54 55 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, 56 size_t size, unsigned int attr) 57 { 58 mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); 59 60 return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm); 61 } 62 63 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size) 64 { 65 return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx, 66 base_va, size); 67 } 68 69 #endif /* PLAT_XLAT_TABLES_DYNAMIC */ 70 71 void init_xlat_tables(void) 72 { 73 assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID); 74 75 int current_el = xlat_arch_current_el(); 76 77 if (current_el == 1) { 78 tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME; 79 } else { 80 assert(current_el == 3); 81 tf_xlat_ctx.xlat_regime = EL3_REGIME; 82 } 83 84 init_xlat_tables_ctx(&tf_xlat_ctx); 85 } 86 87 /* 88 * If dynamic allocation of new regions is disabled then by the time we call the 89 * function enabling the MMU, we'll have registered all the memory regions to 90 * map for the system's lifetime. Therefore, at this point we know the maximum 91 * physical address that will ever be mapped. 92 * 93 * If dynamic allocation is enabled then we can't make any such assumption 94 * because the maximum physical address could get pushed while adding a new 95 * region. Therefore, in this case we have to assume that the whole address 96 * space size might be mapped. 97 */ 98 #ifdef PLAT_XLAT_TABLES_DYNAMIC 99 #define MAX_PHYS_ADDR tf_xlat_ctx.pa_max_address 100 #else 101 #define MAX_PHYS_ADDR tf_xlat_ctx.max_pa 102 #endif 103 104 #ifdef AARCH32 105 106 void enable_mmu_secure(unsigned int flags) 107 { 108 setup_mmu_cfg(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, 109 tf_xlat_ctx.va_max_address, EL1_EL0_REGIME); 110 enable_mmu_direct(flags); 111 } 112 113 #else 114 115 void enable_mmu_el1(unsigned int flags) 116 { 117 setup_mmu_cfg(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, 118 tf_xlat_ctx.va_max_address, EL1_EL0_REGIME); 119 enable_mmu_direct_el1(flags); 120 } 121 122 void enable_mmu_el3(unsigned int flags) 123 { 124 setup_mmu_cfg(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, 125 tf_xlat_ctx.va_max_address, EL3_REGIME); 126 enable_mmu_direct_el3(flags); 127 } 128 129 #endif /* AARCH32 */ 130