xref: /rk3399_ARM-atf/lib/xlat_tables_v2/xlat_tables_context.c (revision 091f39675a98ee9e22ed78f52e239880bedf8911)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <debug.h>
9 #include <platform_def.h>
10 #include <xlat_tables_defs.h>
11 #include <xlat_tables_v2.h>
12 
13 #include "xlat_tables_private.h"
14 
15 /*
16  * MMU configuration register values for the active translation context. Used
17  * from the MMU assembly helpers.
18  */
19 uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
20 
21 /*
22  * Each platform can define the size of its physical and virtual address spaces.
23  * If the platform hasn't defined one or both of them, default to
24  * ADDR_SPACE_SIZE. The latter is deprecated, though.
25  */
26 #if ERROR_DEPRECATED
27 # ifdef ADDR_SPACE_SIZE
28 #  error "ADDR_SPACE_SIZE is deprecated. Use PLAT_xxx_ADDR_SPACE_SIZE instead."
29 # endif
30 #elif defined(ADDR_SPACE_SIZE)
31 # ifndef PLAT_PHY_ADDR_SPACE_SIZE
32 #  define PLAT_PHY_ADDR_SPACE_SIZE	ADDR_SPACE_SIZE
33 # endif
34 # ifndef PLAT_VIRT_ADDR_SPACE_SIZE
35 #  define PLAT_VIRT_ADDR_SPACE_SIZE	ADDR_SPACE_SIZE
36 # endif
37 #endif
38 
39 /*
40  * Allocate and initialise the default translation context for the BL image
41  * currently executing.
42  */
43 REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
44 		PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);
45 
46 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size,
47 		     unsigned int attr)
48 {
49 	mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
50 
51 	mmap_add_region_ctx(&tf_xlat_ctx, &mm);
52 }
53 
54 void mmap_add(const mmap_region_t *mm)
55 {
56 	mmap_add_ctx(&tf_xlat_ctx, mm);
57 }
58 
59 #if PLAT_XLAT_TABLES_DYNAMIC
60 
61 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
62 			    size_t size, unsigned int attr)
63 {
64 	mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
65 
66 	return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm);
67 }
68 
69 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size)
70 {
71 	return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx,
72 					base_va, size);
73 }
74 
75 #endif /* PLAT_XLAT_TABLES_DYNAMIC */
76 
77 void init_xlat_tables(void)
78 {
79 	assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID);
80 
81 	unsigned int current_el = xlat_arch_current_el();
82 
83 	if (current_el == 1U) {
84 		tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME;
85 	} else if (current_el == 2U) {
86 		tf_xlat_ctx.xlat_regime = EL2_REGIME;
87 	} else {
88 		assert(current_el == 3U);
89 		tf_xlat_ctx.xlat_regime = EL3_REGIME;
90 	}
91 
92 	init_xlat_tables_ctx(&tf_xlat_ctx);
93 }
94 
95 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr)
96 {
97 	return xlat_get_mem_attributes_ctx(&tf_xlat_ctx, base_va, attr);
98 }
99 
100 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr)
101 {
102 	return xlat_change_mem_attributes_ctx(&tf_xlat_ctx, base_va, size, attr);
103 }
104 
105 /*
106  * If dynamic allocation of new regions is disabled then by the time we call the
107  * function enabling the MMU, we'll have registered all the memory regions to
108  * map for the system's lifetime. Therefore, at this point we know the maximum
109  * physical address that will ever be mapped.
110  *
111  * If dynamic allocation is enabled then we can't make any such assumption
112  * because the maximum physical address could get pushed while adding a new
113  * region. Therefore, in this case we have to assume that the whole address
114  * space size might be mapped.
115  */
116 #ifdef PLAT_XLAT_TABLES_DYNAMIC
117 #define MAX_PHYS_ADDR	tf_xlat_ctx.pa_max_address
118 #else
119 #define MAX_PHYS_ADDR	tf_xlat_ctx.max_pa
120 #endif
121 
122 #ifdef AARCH32
123 
124 #if !ERROR_DEPRECATED
125 void enable_mmu_secure(unsigned int flags)
126 {
127 	enable_mmu_svc_mon(flags);
128 }
129 
130 void enable_mmu_direct(unsigned int flags)
131 {
132 	enable_mmu_direct_svc_mon(flags);
133 }
134 #endif
135 
136 void enable_mmu_svc_mon(unsigned int flags)
137 {
138 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
139 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
140 		      tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
141 	enable_mmu_direct_svc_mon(flags);
142 }
143 
144 void enable_mmu_hyp(unsigned int flags)
145 {
146 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
147 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
148 		      tf_xlat_ctx.va_max_address, EL2_REGIME);
149 	enable_mmu_direct_hyp(flags);
150 }
151 
152 #else
153 
154 void enable_mmu_el1(unsigned int flags)
155 {
156 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
157 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
158 		      tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
159 	enable_mmu_direct_el1(flags);
160 }
161 
162 void enable_mmu_el2(unsigned int flags)
163 {
164 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
165 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
166 		      tf_xlat_ctx.va_max_address, EL2_REGIME);
167 	enable_mmu_direct_el2(flags);
168 }
169 
170 void enable_mmu_el3(unsigned int flags)
171 {
172 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
173 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
174 		      tf_xlat_ctx.va_max_address, EL3_REGIME);
175 	enable_mmu_direct_el3(flags);
176 }
177 
178 #endif /* AARCH32 */
179