xref: /rk3399_ARM-atf/lib/xlat_tables_v2/xlat_tables_context.c (revision 020ce8c9f6eb959809468e1d70f9946b2f8faef9)
1 /*
2  * Copyright (c) 2017-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <assert.h>
9 
10 #include <platform_def.h>
11 
12 #include <common/debug.h>
13 #include <lib/xlat_tables/xlat_tables_defs.h>
14 #include <lib/xlat_tables/xlat_tables_v2.h>
15 
16 #include "xlat_tables_private.h"
17 
18 /*
19  * MMU configuration register values for the active translation context. Used
20  * from the MMU assembly helpers.
21  */
22 uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
23 
24 /*
25  * Allocate and initialise the default translation context for the BL image
26  * currently executing.
27  */
28 #if PLAT_RO_XLAT_TABLES
29 REGISTER_XLAT_CONTEXT_RO_BASE_TABLE(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
30 		PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE,
31 		EL_REGIME_INVALID, "xlat_table");
32 #else
33 REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
34 		PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);
35 #endif
36 
37 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size,
38 		     unsigned int attr)
39 {
40 	mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
41 
42 	mmap_add_region_ctx(&tf_xlat_ctx, &mm);
43 }
44 
45 void mmap_add(const mmap_region_t *mm)
46 {
47 	mmap_add_ctx(&tf_xlat_ctx, mm);
48 }
49 
50 void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va,
51 			      size_t size, unsigned int attr)
52 {
53 	mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr);
54 
55 	mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, &mm);
56 
57 	*base_va = mm.base_va;
58 }
59 
60 void mmap_add_alloc_va(mmap_region_t *mm)
61 {
62 	while (mm->granularity != 0U) {
63 		assert(mm->base_va == 0U);
64 		mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, mm);
65 		mm++;
66 	}
67 }
68 
69 #if PLAT_XLAT_TABLES_DYNAMIC
70 
71 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
72 			    size_t size, unsigned int attr)
73 {
74 	mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
75 
76 	return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm);
77 }
78 
79 int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa,
80 				     uintptr_t *base_va, size_t size,
81 				     unsigned int attr)
82 {
83 	mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr);
84 
85 	int rc = mmap_add_dynamic_region_alloc_va_ctx(&tf_xlat_ctx, &mm);
86 
87 	*base_va = mm.base_va;
88 
89 	return rc;
90 }
91 
92 
93 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size)
94 {
95 	return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx,
96 					base_va, size);
97 }
98 
99 #endif /* PLAT_XLAT_TABLES_DYNAMIC */
100 
101 void __init init_xlat_tables(void)
102 {
103 	assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID);
104 
105 	unsigned int current_el = xlat_arch_current_el();
106 
107 	if (current_el == 1U) {
108 		tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME;
109 	} else if (current_el == 2U) {
110 		tf_xlat_ctx.xlat_regime = EL2_REGIME;
111 	} else {
112 		assert(current_el == 3U);
113 		tf_xlat_ctx.xlat_regime = EL3_REGIME;
114 	}
115 
116 	init_xlat_tables_ctx(&tf_xlat_ctx);
117 }
118 
119 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr)
120 {
121 	return xlat_get_mem_attributes_ctx(&tf_xlat_ctx, base_va, attr);
122 }
123 
124 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr)
125 {
126 	return xlat_change_mem_attributes_ctx(&tf_xlat_ctx, base_va, size, attr);
127 }
128 
129 #if PLAT_RO_XLAT_TABLES
130 /* Change the memory attributes of the descriptors which resolve the address
131  * range that belongs to the translation tables themselves, which are by default
132  * mapped as part of read-write data in the BL image's memory.
133  *
134  * Since the translation tables map themselves via these level 3 (page)
135  * descriptors, any change applied to them with the MMU on would introduce a
136  * chicken and egg problem because of the break-before-make sequence.
137  * Eventually, it would reach the descriptor that resolves the very table it
138  * belongs to and the invalidation (break step) would cause the subsequent write
139  * (make step) to it to generate an MMU fault. Therefore, the MMU is disabled
140  * before making the change.
141  *
142  * No assumption is made about what data this function needs, therefore all the
143  * caches are flushed in order to ensure coherency. A future optimization would
144  * be to only flush the required data to main memory.
145  */
146 int xlat_make_tables_readonly(void)
147 {
148 	assert(tf_xlat_ctx.initialized == true);
149 #ifdef __aarch64__
150 	if (tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME) {
151 		disable_mmu_el1();
152 	} else if (tf_xlat_ctx.xlat_regime == EL3_REGIME) {
153 		disable_mmu_el3();
154 	} else {
155 		assert(tf_xlat_ctx.xlat_regime == EL2_REGIME);
156 		return -1;
157 	}
158 
159 	/* Flush all caches. */
160 	dcsw_op_all(DCCISW);
161 #else /* !__aarch64__ */
162 	assert(tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME);
163 	/* On AArch32, we flush the caches before disabling the MMU. The reason
164 	 * for this is that the dcsw_op_all AArch32 function pushes some
165 	 * registers onto the stack under the assumption that it is writing to
166 	 * cache, which is not true with the MMU off. This would result in the
167 	 * stack becoming corrupted and a wrong/junk value for the LR being
168 	 * restored at the end of the routine.
169 	 */
170 	dcsw_op_all(DC_OP_CISW);
171 	disable_mmu_secure();
172 #endif
173 
174 	int rc = xlat_change_mem_attributes_ctx(&tf_xlat_ctx,
175 				(uintptr_t)tf_xlat_ctx.tables,
176 				tf_xlat_ctx.tables_num * XLAT_TABLE_SIZE,
177 				MT_RO_DATA | MT_SECURE);
178 
179 #ifdef __aarch64__
180 	if (tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME) {
181 		enable_mmu_el1(0U);
182 	} else {
183 		assert(tf_xlat_ctx.xlat_regime == EL3_REGIME);
184 		enable_mmu_el3(0U);
185 	}
186 #else /* !__aarch64__ */
187 	enable_mmu_svc_mon(0U);
188 #endif
189 
190 	if (rc == 0) {
191 		tf_xlat_ctx.readonly_tables = true;
192 	}
193 
194 	return rc;
195 }
196 #endif /* PLAT_RO_XLAT_TABLES */
197 
198 /*
199  * If dynamic allocation of new regions is disabled then by the time we call the
200  * function enabling the MMU, we'll have registered all the memory regions to
201  * map for the system's lifetime. Therefore, at this point we know the maximum
202  * physical address that will ever be mapped.
203  *
204  * If dynamic allocation is enabled then we can't make any such assumption
205  * because the maximum physical address could get pushed while adding a new
206  * region. Therefore, in this case we have to assume that the whole address
207  * space size might be mapped.
208  */
209 #ifdef PLAT_XLAT_TABLES_DYNAMIC
210 #define MAX_PHYS_ADDR	tf_xlat_ctx.pa_max_address
211 #else
212 #define MAX_PHYS_ADDR	tf_xlat_ctx.max_pa
213 #endif
214 
215 #ifdef __aarch64__
216 
217 void enable_mmu_el1(unsigned int flags)
218 {
219 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
220 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
221 		      tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
222 	enable_mmu_direct_el1(flags);
223 }
224 
225 void enable_mmu_el2(unsigned int flags)
226 {
227 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
228 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
229 		      tf_xlat_ctx.va_max_address, EL2_REGIME);
230 	enable_mmu_direct_el2(flags);
231 }
232 
233 void enable_mmu_el3(unsigned int flags)
234 {
235 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
236 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
237 		      tf_xlat_ctx.va_max_address, EL3_REGIME);
238 	enable_mmu_direct_el3(flags);
239 }
240 
241 #else /* !__aarch64__ */
242 
243 void enable_mmu_svc_mon(unsigned int flags)
244 {
245 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
246 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
247 		      tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
248 	enable_mmu_direct_svc_mon(flags);
249 }
250 
251 void enable_mmu_hyp(unsigned int flags)
252 {
253 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
254 		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
255 		      tf_xlat_ctx.va_max_address, EL2_REGIME);
256 	enable_mmu_direct_hyp(flags);
257 }
258 
259 #endif /* __aarch64__ */
260