xref: /rk3399_ARM-atf/lib/xlat_tables_v2/aarch64/xlat_tables_arch.c (revision ff2743e544f0f82381ebb9dff8f14eacb837d2e0)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <cassert.h>
12 #include <common_def.h>
13 #include <sys/types.h>
14 #include <utils.h>
15 #include <utils_def.h>
16 #include <xlat_tables_v2.h>
17 #include "../xlat_tables_private.h"
18 
19 /*
20  * Returns 1 if the provided granule size is supported, 0 otherwise.
21  */
22 int xlat_arch_is_granule_size_supported(size_t size)
23 {
24 	u_register_t id_aa64mmfr0_el1 = read_id_aa64mmfr0_el1();
25 
26 	if (size == (4U * 1024U)) {
27 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) &
28 			 ID_AA64MMFR0_EL1_TGRAN4_MASK) ==
29 			 ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED;
30 	} else if (size == (16U * 1024U)) {
31 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) &
32 			 ID_AA64MMFR0_EL1_TGRAN16_MASK) ==
33 			 ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED;
34 	} else if (size == (64U * 1024U)) {
35 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) &
36 			 ID_AA64MMFR0_EL1_TGRAN64_MASK) ==
37 			 ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED;
38 	}
39 
40 	return 0;
41 }
42 
43 size_t xlat_arch_get_max_supported_granule_size(void)
44 {
45 	if (xlat_arch_is_granule_size_supported(64U * 1024U)) {
46 		return 64U * 1024U;
47 	} else if (xlat_arch_is_granule_size_supported(16U * 1024U)) {
48 		return 16U * 1024U;
49 	} else {
50 		assert(xlat_arch_is_granule_size_supported(4U * 1024U));
51 		return 4U * 1024U;
52 	}
53 }
54 
55 unsigned long long tcr_physical_addr_size_bits(unsigned long long max_addr)
56 {
57 	/* Physical address can't exceed 48 bits */
58 	assert((max_addr & ADDR_MASK_48_TO_63) == 0);
59 
60 	/* 48 bits address */
61 	if (max_addr & ADDR_MASK_44_TO_47)
62 		return TCR_PS_BITS_256TB;
63 
64 	/* 44 bits address */
65 	if (max_addr & ADDR_MASK_42_TO_43)
66 		return TCR_PS_BITS_16TB;
67 
68 	/* 42 bits address */
69 	if (max_addr & ADDR_MASK_40_TO_41)
70 		return TCR_PS_BITS_4TB;
71 
72 	/* 40 bits address */
73 	if (max_addr & ADDR_MASK_36_TO_39)
74 		return TCR_PS_BITS_1TB;
75 
76 	/* 36 bits address */
77 	if (max_addr & ADDR_MASK_32_TO_35)
78 		return TCR_PS_BITS_64GB;
79 
80 	return TCR_PS_BITS_4GB;
81 }
82 
83 #if ENABLE_ASSERTIONS
84 /*
85  * Physical Address ranges supported in the AArch64 Memory Model. Value 0b110 is
86  * supported in ARMv8.2 onwards.
87  */
88 static const unsigned int pa_range_bits_arr[] = {
89 	PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100,
90 	PARANGE_0101, PARANGE_0110
91 };
92 
93 unsigned long long xlat_arch_get_max_supported_pa(void)
94 {
95 	u_register_t pa_range = read_id_aa64mmfr0_el1() &
96 						ID_AA64MMFR0_EL1_PARANGE_MASK;
97 
98 	/* All other values are reserved */
99 	assert(pa_range < ARRAY_SIZE(pa_range_bits_arr));
100 
101 	return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL;
102 }
103 #endif /* ENABLE_ASSERTIONS*/
104 
105 int is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
106 {
107 	if (ctx->xlat_regime == EL1_EL0_REGIME) {
108 		assert(xlat_arch_current_el() >= 1);
109 		return (read_sctlr_el1() & SCTLR_M_BIT) != 0;
110 	} else {
111 		assert(ctx->xlat_regime == EL3_REGIME);
112 		assert(xlat_arch_current_el() >= 3);
113 		return (read_sctlr_el3() & SCTLR_M_BIT) != 0;
114 	}
115 }
116 
117 
118 void xlat_arch_tlbi_va(uintptr_t va)
119 {
120 #if IMAGE_EL == 1
121 	assert(IS_IN_EL(1));
122 	xlat_arch_tlbi_va_regime(va, EL1_EL0_REGIME);
123 #elif IMAGE_EL == 3
124 	assert(IS_IN_EL(3));
125 	xlat_arch_tlbi_va_regime(va, EL3_REGIME);
126 #endif
127 }
128 
129 void xlat_arch_tlbi_va_regime(uintptr_t va, xlat_regime_t xlat_regime)
130 {
131 	/*
132 	 * Ensure the translation table write has drained into memory before
133 	 * invalidating the TLB entry.
134 	 */
135 	dsbishst();
136 
137 	/*
138 	 * This function only supports invalidation of TLB entries for the EL3
139 	 * and EL1&0 translation regimes.
140 	 *
141 	 * Also, it is architecturally UNDEFINED to invalidate TLBs of a higher
142 	 * exception level (see section D4.9.2 of the ARM ARM rev B.a).
143 	 */
144 	if (xlat_regime == EL1_EL0_REGIME) {
145 		assert(xlat_arch_current_el() >= 1);
146 		tlbivaae1is(TLBI_ADDR(va));
147 	} else {
148 		assert(xlat_regime == EL3_REGIME);
149 		assert(xlat_arch_current_el() >= 3);
150 		tlbivae3is(TLBI_ADDR(va));
151 	}
152 }
153 
154 void xlat_arch_tlbi_va_sync(void)
155 {
156 	/*
157 	 * A TLB maintenance instruction can complete at any time after
158 	 * it is issued, but is only guaranteed to be complete after the
159 	 * execution of DSB by the PE that executed the TLB maintenance
160 	 * instruction. After the TLB invalidate instruction is
161 	 * complete, no new memory accesses using the invalidated TLB
162 	 * entries will be observed by any observer of the system
163 	 * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
164 	 * "Ordering and completion of TLB maintenance instructions".
165 	 */
166 	dsbish();
167 
168 	/*
169 	 * The effects of a completed TLB maintenance instruction are
170 	 * only guaranteed to be visible on the PE that executed the
171 	 * instruction after the execution of an ISB instruction by the
172 	 * PE that executed the TLB maintenance instruction.
173 	 */
174 	isb();
175 }
176 
177 int xlat_arch_current_el(void)
178 {
179 	int el = GET_EL(read_CurrentEl());
180 
181 	assert(el > 0);
182 
183 	return el;
184 }
185 
186 /*******************************************************************************
187  * Macro generating the code for the function enabling the MMU in the given
188  * exception level, assuming that the pagetables have already been created.
189  *
190  *   _el:		Exception level at which the function will run
191  *   _tlbi_fct:		Function to invalidate the TLBs at the current
192  *			exception level
193  ******************************************************************************/
194 #define DEFINE_ENABLE_MMU_EL(_el, _tlbi_fct)				\
195 	static void enable_mmu_internal_el##_el(int flags,		\
196 						uint64_t mair,		\
197 						uint64_t tcr,		\
198 						uint64_t ttbr)		\
199 	{								\
200 		uint32_t sctlr = read_sctlr_el##_el();			\
201 		assert((sctlr & SCTLR_M_BIT) == 0);			\
202 									\
203 		/* Invalidate TLBs at the current exception level */	\
204 		_tlbi_fct();						\
205 									\
206 		write_mair_el##_el(mair);				\
207 		write_tcr_el##_el(tcr);					\
208 									\
209 		/* Set TTBR bits as well */				\
210 		if (ARM_ARCH_AT_LEAST(8, 2)) {				\
211 			/* Enable CnP bit so as to share page tables */	\
212 			/* with all PEs. This is mandatory for */	\
213 			/* ARMv8.2 implementations. */			\
214 			ttbr |= TTBR_CNP_BIT;				\
215 		}							\
216 		write_ttbr0_el##_el(ttbr);				\
217 									\
218 		/* Ensure all translation table writes have drained */	\
219 		/* into memory, the TLB invalidation is complete, */	\
220 		/* and translation register writes are committed */	\
221 		/* before enabling the MMU */				\
222 		dsbish();						\
223 		isb();							\
224 									\
225 		sctlr |= SCTLR_WXN_BIT | SCTLR_M_BIT;			\
226 		if (flags & DISABLE_DCACHE)				\
227 			sctlr &= ~SCTLR_C_BIT;				\
228 		else							\
229 			sctlr |= SCTLR_C_BIT;				\
230 									\
231 		write_sctlr_el##_el(sctlr);				\
232 									\
233 		/* Ensure the MMU enable takes effect immediately */	\
234 		isb();							\
235 	}
236 
237 /* Define EL1 and EL3 variants of the function enabling the MMU */
238 #if IMAGE_EL == 1
239 DEFINE_ENABLE_MMU_EL(1, tlbivmalle1)
240 #elif IMAGE_EL == 3
241 DEFINE_ENABLE_MMU_EL(3, tlbialle3)
242 #endif
243 
244 void enable_mmu_arch(unsigned int flags,
245 		uint64_t *base_table,
246 		unsigned long long max_pa,
247 		uintptr_t max_va)
248 {
249 	uint64_t mair, ttbr, tcr;
250 
251 	/* Set attributes in the right indices of the MAIR. */
252 	mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
253 	mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);
254 	mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
255 
256 	ttbr = (uint64_t) base_table;
257 
258 	/*
259 	 * Set TCR bits as well.
260 	 */
261 
262 	/*
263 	 * Limit the input address ranges and memory region sizes translated
264 	 * using TTBR0 to the given virtual address space size.
265 	 */
266 	assert(max_va < UINTPTR_MAX);
267 	uintptr_t virtual_addr_space_size = max_va + 1;
268 	assert(CHECK_VIRT_ADDR_SPACE_SIZE(virtual_addr_space_size));
269 	/*
270 	 * __builtin_ctzll(0) is undefined but here we are guaranteed that
271 	 * virtual_addr_space_size is in the range [1,UINTPTR_MAX].
272 	 */
273 	tcr = 64 - __builtin_ctzll(virtual_addr_space_size);
274 
275 	/*
276 	 * Set the cacheability and shareability attributes for memory
277 	 * associated with translation table walks.
278 	 */
279 	if (flags & XLAT_TABLE_NC) {
280 		/* Inner & outer non-cacheable non-shareable. */
281 		tcr |= TCR_SH_NON_SHAREABLE |
282 			TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC;
283 	} else {
284 		/* Inner & outer WBWA & shareable. */
285 		tcr |= TCR_SH_INNER_SHAREABLE |
286 			TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA;
287 	}
288 
289 	/*
290 	 * It is safer to restrict the max physical address accessible by the
291 	 * hardware as much as possible.
292 	 */
293 	unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa);
294 
295 #if IMAGE_EL == 1
296 	assert(IS_IN_EL(1));
297 	/*
298 	 * TCR_EL1.EPD1: Disable translation table walk for addresses that are
299 	 * translated using TTBR1_EL1.
300 	 */
301 	tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT);
302 	enable_mmu_internal_el1(flags, mair, tcr, ttbr);
303 #elif IMAGE_EL == 3
304 	assert(IS_IN_EL(3));
305 	tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT);
306 	enable_mmu_internal_el3(flags, mair, tcr, ttbr);
307 #endif
308 }
309