xref: /rk3399_ARM-atf/lib/xlat_tables_v2/aarch64/xlat_tables_arch.c (revision c3cf06f1a3a9b9ee8ac7a0ae505f95c45f7dca84)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <cassert.h>
11 #include <stdbool.h>
12 #include <stdint.h>
13 #include <utils_def.h>
14 #include <xlat_tables_v2.h>
15 #include "../xlat_tables_private.h"
16 
17 /*
18  * Returns true if the provided granule size is supported, false otherwise.
19  */
20 bool xlat_arch_is_granule_size_supported(size_t size)
21 {
22 	u_register_t id_aa64mmfr0_el1 = read_id_aa64mmfr0_el1();
23 
24 	if (size == PAGE_SIZE_4KB) {
25 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) &
26 			 ID_AA64MMFR0_EL1_TGRAN4_MASK) ==
27 			 ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED;
28 	} else if (size == PAGE_SIZE_16KB) {
29 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) &
30 			 ID_AA64MMFR0_EL1_TGRAN16_MASK) ==
31 			 ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED;
32 	} else if (size == PAGE_SIZE_64KB) {
33 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) &
34 			 ID_AA64MMFR0_EL1_TGRAN64_MASK) ==
35 			 ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED;
36 	} else {
37 		return 0;
38 	}
39 }
40 
41 size_t xlat_arch_get_max_supported_granule_size(void)
42 {
43 	if (xlat_arch_is_granule_size_supported(PAGE_SIZE_64KB)) {
44 		return PAGE_SIZE_64KB;
45 	} else if (xlat_arch_is_granule_size_supported(PAGE_SIZE_16KB)) {
46 		return PAGE_SIZE_16KB;
47 	} else {
48 		assert(xlat_arch_is_granule_size_supported(PAGE_SIZE_4KB));
49 		return PAGE_SIZE_4KB;
50 	}
51 }
52 
53 unsigned long long tcr_physical_addr_size_bits(unsigned long long max_addr)
54 {
55 	/* Physical address can't exceed 48 bits */
56 	assert((max_addr & ADDR_MASK_48_TO_63) == 0U);
57 
58 	/* 48 bits address */
59 	if ((max_addr & ADDR_MASK_44_TO_47) != 0U)
60 		return TCR_PS_BITS_256TB;
61 
62 	/* 44 bits address */
63 	if ((max_addr & ADDR_MASK_42_TO_43) != 0U)
64 		return TCR_PS_BITS_16TB;
65 
66 	/* 42 bits address */
67 	if ((max_addr & ADDR_MASK_40_TO_41) != 0U)
68 		return TCR_PS_BITS_4TB;
69 
70 	/* 40 bits address */
71 	if ((max_addr & ADDR_MASK_36_TO_39) != 0U)
72 		return TCR_PS_BITS_1TB;
73 
74 	/* 36 bits address */
75 	if ((max_addr & ADDR_MASK_32_TO_35) != 0U)
76 		return TCR_PS_BITS_64GB;
77 
78 	return TCR_PS_BITS_4GB;
79 }
80 
81 #if ENABLE_ASSERTIONS
82 /*
83  * Physical Address ranges supported in the AArch64 Memory Model. Value 0b110 is
84  * supported in ARMv8.2 onwards.
85  */
86 static const unsigned int pa_range_bits_arr[] = {
87 	PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100,
88 	PARANGE_0101, PARANGE_0110
89 };
90 
91 unsigned long long xlat_arch_get_max_supported_pa(void)
92 {
93 	u_register_t pa_range = read_id_aa64mmfr0_el1() &
94 						ID_AA64MMFR0_EL1_PARANGE_MASK;
95 
96 	/* All other values are reserved */
97 	assert(pa_range < ARRAY_SIZE(pa_range_bits_arr));
98 
99 	return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL;
100 }
101 #endif /* ENABLE_ASSERTIONS*/
102 
103 bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
104 {
105 	if (ctx->xlat_regime == EL1_EL0_REGIME) {
106 		assert(xlat_arch_current_el() >= 1U);
107 		return (read_sctlr_el1() & SCTLR_M_BIT) != 0U;
108 	} else if (ctx->xlat_regime == EL2_REGIME) {
109 		assert(xlat_arch_current_el() >= 2U);
110 		return (read_sctlr_el2() & SCTLR_M_BIT) != 0U;
111 	} else {
112 		assert(ctx->xlat_regime == EL3_REGIME);
113 		assert(xlat_arch_current_el() >= 3U);
114 		return (read_sctlr_el3() & SCTLR_M_BIT) != 0U;
115 	}
116 }
117 
118 bool is_dcache_enabled(void)
119 {
120 	unsigned int el = (unsigned int)GET_EL(read_CurrentEl());
121 
122 	if (el == 1U) {
123 		return (read_sctlr_el1() & SCTLR_C_BIT) != 0U;
124 	} else if (el == 2U) {
125 		return (read_sctlr_el2() & SCTLR_C_BIT) != 0U;
126 	} else {
127 		return (read_sctlr_el3() & SCTLR_C_BIT) != 0U;
128 	}
129 }
130 
131 uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
132 {
133 	if (xlat_regime == EL1_EL0_REGIME) {
134 		return UPPER_ATTRS(UXN) | UPPER_ATTRS(PXN);
135 	} else {
136 		assert((xlat_regime == EL2_REGIME) ||
137 		       (xlat_regime == EL3_REGIME));
138 		return UPPER_ATTRS(XN);
139 	}
140 }
141 
142 void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
143 {
144 	/*
145 	 * Ensure the translation table write has drained into memory before
146 	 * invalidating the TLB entry.
147 	 */
148 	dsbishst();
149 
150 	/*
151 	 * This function only supports invalidation of TLB entries for the EL3
152 	 * and EL1&0 translation regimes.
153 	 *
154 	 * Also, it is architecturally UNDEFINED to invalidate TLBs of a higher
155 	 * exception level (see section D4.9.2 of the ARM ARM rev B.a).
156 	 */
157 	if (xlat_regime == EL1_EL0_REGIME) {
158 		assert(xlat_arch_current_el() >= 1U);
159 		tlbivaae1is(TLBI_ADDR(va));
160 	} else if (xlat_regime == EL2_REGIME) {
161 		assert(xlat_arch_current_el() >= 2U);
162 		tlbivae2is(TLBI_ADDR(va));
163 	} else {
164 		assert(xlat_regime == EL3_REGIME);
165 		assert(xlat_arch_current_el() >= 3U);
166 		tlbivae3is(TLBI_ADDR(va));
167 	}
168 }
169 
170 void xlat_arch_tlbi_va_sync(void)
171 {
172 	/*
173 	 * A TLB maintenance instruction can complete at any time after
174 	 * it is issued, but is only guaranteed to be complete after the
175 	 * execution of DSB by the PE that executed the TLB maintenance
176 	 * instruction. After the TLB invalidate instruction is
177 	 * complete, no new memory accesses using the invalidated TLB
178 	 * entries will be observed by any observer of the system
179 	 * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
180 	 * "Ordering and completion of TLB maintenance instructions".
181 	 */
182 	dsbish();
183 
184 	/*
185 	 * The effects of a completed TLB maintenance instruction are
186 	 * only guaranteed to be visible on the PE that executed the
187 	 * instruction after the execution of an ISB instruction by the
188 	 * PE that executed the TLB maintenance instruction.
189 	 */
190 	isb();
191 }
192 
193 unsigned int xlat_arch_current_el(void)
194 {
195 	unsigned int el = (unsigned int)GET_EL(read_CurrentEl());
196 
197 	assert(el > 0U);
198 
199 	return el;
200 }
201 
202 void setup_mmu_cfg(uint64_t *params, unsigned int flags,
203 		   const uint64_t *base_table, unsigned long long max_pa,
204 		   uintptr_t max_va, int xlat_regime)
205 {
206 	uint64_t mair, ttbr0, tcr;
207 	uintptr_t virtual_addr_space_size;
208 
209 	/* Set attributes in the right indices of the MAIR. */
210 	mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
211 	mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);
212 	mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
213 
214 	/*
215 	 * Limit the input address ranges and memory region sizes translated
216 	 * using TTBR0 to the given virtual address space size.
217 	 */
218 	assert(max_va < ((uint64_t)UINTPTR_MAX));
219 
220 	virtual_addr_space_size = (uintptr_t)max_va + 1U;
221 	assert(CHECK_VIRT_ADDR_SPACE_SIZE(virtual_addr_space_size));
222 
223 	/*
224 	 * __builtin_ctzll(0) is undefined but here we are guaranteed that
225 	 * virtual_addr_space_size is in the range [1,UINTPTR_MAX].
226 	 */
227 	int t0sz = 64 - __builtin_ctzll(virtual_addr_space_size);
228 
229 	tcr = (uint64_t) t0sz;
230 
231 	/*
232 	 * Set the cacheability and shareability attributes for memory
233 	 * associated with translation table walks.
234 	 */
235 	if ((flags & XLAT_TABLE_NC) != 0U) {
236 		/* Inner & outer non-cacheable non-shareable. */
237 		tcr |= TCR_SH_NON_SHAREABLE |
238 			TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC;
239 	} else {
240 		/* Inner & outer WBWA & shareable. */
241 		tcr |= TCR_SH_INNER_SHAREABLE |
242 			TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA;
243 	}
244 
245 	/*
246 	 * It is safer to restrict the max physical address accessible by the
247 	 * hardware as much as possible.
248 	 */
249 	unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa);
250 
251 	if (xlat_regime == EL1_EL0_REGIME) {
252 		/*
253 		 * TCR_EL1.EPD1: Disable translation table walk for addresses
254 		 * that are translated using TTBR1_EL1.
255 		 */
256 		tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT);
257 	} else if (xlat_regime == EL2_REGIME) {
258 		tcr |= TCR_EL2_RES1 | (tcr_ps_bits << TCR_EL2_PS_SHIFT);
259 	} else {
260 		assert(xlat_regime == EL3_REGIME);
261 		tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT);
262 	}
263 
264 	/* Set TTBR bits as well */
265 	ttbr0 = (uint64_t) base_table;
266 
267 #if ARM_ARCH_AT_LEAST(8, 2)
268 	/*
269 	 * Enable CnP bit so as to share page tables with all PEs. This
270 	 * is mandatory for ARMv8.2 implementations.
271 	 */
272 	ttbr0 |= TTBR_CNP_BIT;
273 #endif
274 
275 	params[MMU_CFG_MAIR] = mair;
276 	params[MMU_CFG_TCR] = tcr;
277 	params[MMU_CFG_TTBR0] = ttbr0;
278 }
279