xref: /rk3399_ARM-atf/lib/xlat_tables_v2/aarch64/xlat_tables_arch.c (revision b56dc2a98cab0ea618cce83b3702814b7fcafd7d)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <cassert.h>
11 #include <sys/types.h>
12 #include <utils_def.h>
13 #include <xlat_tables_v2.h>
14 #include "../xlat_tables_private.h"
15 
16 uint32_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
17 
18 /*
19  * Returns 1 if the provided granule size is supported, 0 otherwise.
20  */
21 int xlat_arch_is_granule_size_supported(size_t size)
22 {
23 	u_register_t id_aa64mmfr0_el1 = read_id_aa64mmfr0_el1();
24 
25 	if (size == (4U * 1024U)) {
26 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) &
27 			 ID_AA64MMFR0_EL1_TGRAN4_MASK) ==
28 			 ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED;
29 	} else if (size == (16U * 1024U)) {
30 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) &
31 			 ID_AA64MMFR0_EL1_TGRAN16_MASK) ==
32 			 ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED;
33 	} else if (size == (64U * 1024U)) {
34 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) &
35 			 ID_AA64MMFR0_EL1_TGRAN64_MASK) ==
36 			 ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED;
37 	}
38 
39 	return 0;
40 }
41 
42 size_t xlat_arch_get_max_supported_granule_size(void)
43 {
44 	if (xlat_arch_is_granule_size_supported(64U * 1024U)) {
45 		return 64U * 1024U;
46 	} else if (xlat_arch_is_granule_size_supported(16U * 1024U)) {
47 		return 16U * 1024U;
48 	} else {
49 		assert(xlat_arch_is_granule_size_supported(4U * 1024U));
50 		return 4U * 1024U;
51 	}
52 }
53 
54 unsigned long long tcr_physical_addr_size_bits(unsigned long long max_addr)
55 {
56 	/* Physical address can't exceed 48 bits */
57 	assert((max_addr & ADDR_MASK_48_TO_63) == 0);
58 
59 	/* 48 bits address */
60 	if (max_addr & ADDR_MASK_44_TO_47)
61 		return TCR_PS_BITS_256TB;
62 
63 	/* 44 bits address */
64 	if (max_addr & ADDR_MASK_42_TO_43)
65 		return TCR_PS_BITS_16TB;
66 
67 	/* 42 bits address */
68 	if (max_addr & ADDR_MASK_40_TO_41)
69 		return TCR_PS_BITS_4TB;
70 
71 	/* 40 bits address */
72 	if (max_addr & ADDR_MASK_36_TO_39)
73 		return TCR_PS_BITS_1TB;
74 
75 	/* 36 bits address */
76 	if (max_addr & ADDR_MASK_32_TO_35)
77 		return TCR_PS_BITS_64GB;
78 
79 	return TCR_PS_BITS_4GB;
80 }
81 
82 #if ENABLE_ASSERTIONS
83 /*
84  * Physical Address ranges supported in the AArch64 Memory Model. Value 0b110 is
85  * supported in ARMv8.2 onwards.
86  */
87 static const unsigned int pa_range_bits_arr[] = {
88 	PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100,
89 	PARANGE_0101, PARANGE_0110
90 };
91 
92 unsigned long long xlat_arch_get_max_supported_pa(void)
93 {
94 	u_register_t pa_range = read_id_aa64mmfr0_el1() &
95 						ID_AA64MMFR0_EL1_PARANGE_MASK;
96 
97 	/* All other values are reserved */
98 	assert(pa_range < ARRAY_SIZE(pa_range_bits_arr));
99 
100 	return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL;
101 }
102 #endif /* ENABLE_ASSERTIONS*/
103 
104 int is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
105 {
106 	if (ctx->xlat_regime == EL1_EL0_REGIME) {
107 		assert(xlat_arch_current_el() >= 1);
108 		return (read_sctlr_el1() & SCTLR_M_BIT) != 0;
109 	} else {
110 		assert(ctx->xlat_regime == EL3_REGIME);
111 		assert(xlat_arch_current_el() >= 3);
112 		return (read_sctlr_el3() & SCTLR_M_BIT) != 0;
113 	}
114 }
115 
116 
117 void xlat_arch_tlbi_va(uintptr_t va)
118 {
119 #if IMAGE_EL == 1
120 	assert(IS_IN_EL(1));
121 	xlat_arch_tlbi_va_regime(va, EL1_EL0_REGIME);
122 #elif IMAGE_EL == 3
123 	assert(IS_IN_EL(3));
124 	xlat_arch_tlbi_va_regime(va, EL3_REGIME);
125 #endif
126 }
127 
128 void xlat_arch_tlbi_va_regime(uintptr_t va, int xlat_regime)
129 {
130 	/*
131 	 * Ensure the translation table write has drained into memory before
132 	 * invalidating the TLB entry.
133 	 */
134 	dsbishst();
135 
136 	/*
137 	 * This function only supports invalidation of TLB entries for the EL3
138 	 * and EL1&0 translation regimes.
139 	 *
140 	 * Also, it is architecturally UNDEFINED to invalidate TLBs of a higher
141 	 * exception level (see section D4.9.2 of the ARM ARM rev B.a).
142 	 */
143 	if (xlat_regime == EL1_EL0_REGIME) {
144 		assert(xlat_arch_current_el() >= 1);
145 		tlbivaae1is(TLBI_ADDR(va));
146 	} else {
147 		assert(xlat_regime == EL3_REGIME);
148 		assert(xlat_arch_current_el() >= 3);
149 		tlbivae3is(TLBI_ADDR(va));
150 	}
151 }
152 
153 void xlat_arch_tlbi_va_sync(void)
154 {
155 	/*
156 	 * A TLB maintenance instruction can complete at any time after
157 	 * it is issued, but is only guaranteed to be complete after the
158 	 * execution of DSB by the PE that executed the TLB maintenance
159 	 * instruction. After the TLB invalidate instruction is
160 	 * complete, no new memory accesses using the invalidated TLB
161 	 * entries will be observed by any observer of the system
162 	 * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
163 	 * "Ordering and completion of TLB maintenance instructions".
164 	 */
165 	dsbish();
166 
167 	/*
168 	 * The effects of a completed TLB maintenance instruction are
169 	 * only guaranteed to be visible on the PE that executed the
170 	 * instruction after the execution of an ISB instruction by the
171 	 * PE that executed the TLB maintenance instruction.
172 	 */
173 	isb();
174 }
175 
176 int xlat_arch_current_el(void)
177 {
178 	int el = GET_EL(read_CurrentEl());
179 
180 	assert(el > 0);
181 
182 	return el;
183 }
184 
185 void setup_mmu_cfg(unsigned int flags,
186 		const uint64_t *base_table,
187 		unsigned long long max_pa,
188 		uintptr_t max_va)
189 {
190 	uint64_t mair, ttbr, tcr;
191 	uintptr_t virtual_addr_space_size;
192 
193 	/* Set attributes in the right indices of the MAIR. */
194 	mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
195 	mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);
196 	mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
197 
198 	ttbr = (uint64_t) base_table;
199 
200 	/*
201 	 * Limit the input address ranges and memory region sizes translated
202 	 * using TTBR0 to the given virtual address space size.
203 	 */
204 	assert(max_va < ((uint64_t) UINTPTR_MAX));
205 
206 	virtual_addr_space_size = max_va + 1;
207 	assert(CHECK_VIRT_ADDR_SPACE_SIZE(virtual_addr_space_size));
208 
209 	/*
210 	 * __builtin_ctzll(0) is undefined but here we are guaranteed that
211 	 * virtual_addr_space_size is in the range [1,UINTPTR_MAX].
212 	 */
213 	tcr = (uint64_t) 64 - __builtin_ctzll(virtual_addr_space_size);
214 
215 	/*
216 	 * Set the cacheability and shareability attributes for memory
217 	 * associated with translation table walks.
218 	 */
219 	if ((flags & XLAT_TABLE_NC) != 0) {
220 		/* Inner & outer non-cacheable non-shareable. */
221 		tcr |= TCR_SH_NON_SHAREABLE |
222 			TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC;
223 	} else {
224 		/* Inner & outer WBWA & shareable. */
225 		tcr |= TCR_SH_INNER_SHAREABLE |
226 			TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA;
227 	}
228 
229 	/*
230 	 * It is safer to restrict the max physical address accessible by the
231 	 * hardware as much as possible.
232 	 */
233 	unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa);
234 
235 #if IMAGE_EL == 1
236 	assert(IS_IN_EL(1));
237 	/*
238 	 * TCR_EL1.EPD1: Disable translation table walk for addresses that are
239 	 * translated using TTBR1_EL1.
240 	 */
241 	tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT);
242 #elif IMAGE_EL == 3
243 	assert(IS_IN_EL(3));
244 	tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT);
245 #endif
246 
247 	mmu_cfg_params[MMU_CFG_MAIR0] = (uint32_t) mair;
248 	mmu_cfg_params[MMU_CFG_TCR] = (uint32_t) tcr;
249 
250 	/* Set TTBR bits as well */
251 	if (ARM_ARCH_AT_LEAST(8, 2)) {
252 		/*
253 		 * Enable CnP bit so as to share page tables with all PEs. This
254 		 * is mandatory for ARMv8.2 implementations.
255 		 */
256 		ttbr |= TTBR_CNP_BIT;
257 	}
258 
259 	mmu_cfg_params[MMU_CFG_TTBR0_LO] = (uint32_t) ttbr;
260 	mmu_cfg_params[MMU_CFG_TTBR0_HI] = (uint32_t) (ttbr >> 32);
261 }
262