xref: /rk3399_ARM-atf/lib/xlat_tables_v2/aarch64/xlat_tables_arch.c (revision aa1d5f60474ae0508b2953c72148c176c08d9cfe)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <cassert.h>
11 #include <sys/types.h>
12 #include <utils_def.h>
13 #include <xlat_tables_v2.h>
14 #include "../xlat_tables_private.h"
15 
16 uint32_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
17 
18 /*
19  * Returns 1 if the provided granule size is supported, 0 otherwise.
20  */
21 int xlat_arch_is_granule_size_supported(size_t size)
22 {
23 	u_register_t id_aa64mmfr0_el1 = read_id_aa64mmfr0_el1();
24 
25 	if (size == (4U * 1024U)) {
26 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) &
27 			 ID_AA64MMFR0_EL1_TGRAN4_MASK) ==
28 			 ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED;
29 	} else if (size == (16U * 1024U)) {
30 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) &
31 			 ID_AA64MMFR0_EL1_TGRAN16_MASK) ==
32 			 ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED;
33 	} else if (size == (64U * 1024U)) {
34 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) &
35 			 ID_AA64MMFR0_EL1_TGRAN64_MASK) ==
36 			 ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED;
37 	}
38 
39 	return 0;
40 }
41 
42 size_t xlat_arch_get_max_supported_granule_size(void)
43 {
44 	if (xlat_arch_is_granule_size_supported(64U * 1024U)) {
45 		return 64U * 1024U;
46 	} else if (xlat_arch_is_granule_size_supported(16U * 1024U)) {
47 		return 16U * 1024U;
48 	} else {
49 		assert(xlat_arch_is_granule_size_supported(4U * 1024U));
50 		return 4U * 1024U;
51 	}
52 }
53 
54 unsigned long long tcr_physical_addr_size_bits(unsigned long long max_addr)
55 {
56 	/* Physical address can't exceed 48 bits */
57 	assert((max_addr & ADDR_MASK_48_TO_63) == 0);
58 
59 	/* 48 bits address */
60 	if (max_addr & ADDR_MASK_44_TO_47)
61 		return TCR_PS_BITS_256TB;
62 
63 	/* 44 bits address */
64 	if (max_addr & ADDR_MASK_42_TO_43)
65 		return TCR_PS_BITS_16TB;
66 
67 	/* 42 bits address */
68 	if (max_addr & ADDR_MASK_40_TO_41)
69 		return TCR_PS_BITS_4TB;
70 
71 	/* 40 bits address */
72 	if (max_addr & ADDR_MASK_36_TO_39)
73 		return TCR_PS_BITS_1TB;
74 
75 	/* 36 bits address */
76 	if (max_addr & ADDR_MASK_32_TO_35)
77 		return TCR_PS_BITS_64GB;
78 
79 	return TCR_PS_BITS_4GB;
80 }
81 
82 #if ENABLE_ASSERTIONS
83 /*
84  * Physical Address ranges supported in the AArch64 Memory Model. Value 0b110 is
85  * supported in ARMv8.2 onwards.
86  */
87 static const unsigned int pa_range_bits_arr[] = {
88 	PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100,
89 	PARANGE_0101, PARANGE_0110
90 };
91 
92 unsigned long long xlat_arch_get_max_supported_pa(void)
93 {
94 	u_register_t pa_range = read_id_aa64mmfr0_el1() &
95 						ID_AA64MMFR0_EL1_PARANGE_MASK;
96 
97 	/* All other values are reserved */
98 	assert(pa_range < ARRAY_SIZE(pa_range_bits_arr));
99 
100 	return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL;
101 }
102 #endif /* ENABLE_ASSERTIONS*/
103 
104 int is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
105 {
106 	if (ctx->xlat_regime == EL1_EL0_REGIME) {
107 		assert(xlat_arch_current_el() >= 1);
108 		return (read_sctlr_el1() & SCTLR_M_BIT) != 0;
109 	} else {
110 		assert(ctx->xlat_regime == EL3_REGIME);
111 		assert(xlat_arch_current_el() >= 3);
112 		return (read_sctlr_el3() & SCTLR_M_BIT) != 0;
113 	}
114 }
115 
116 uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
117 {
118 	if (xlat_regime == EL1_EL0_REGIME) {
119 		return UPPER_ATTRS(UXN) | UPPER_ATTRS(PXN);
120 	} else {
121 		assert(xlat_regime == EL3_REGIME);
122 		return UPPER_ATTRS(XN);
123 	}
124 }
125 
126 void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
127 {
128 	/*
129 	 * Ensure the translation table write has drained into memory before
130 	 * invalidating the TLB entry.
131 	 */
132 	dsbishst();
133 
134 	/*
135 	 * This function only supports invalidation of TLB entries for the EL3
136 	 * and EL1&0 translation regimes.
137 	 *
138 	 * Also, it is architecturally UNDEFINED to invalidate TLBs of a higher
139 	 * exception level (see section D4.9.2 of the ARM ARM rev B.a).
140 	 */
141 	if (xlat_regime == EL1_EL0_REGIME) {
142 		assert(xlat_arch_current_el() >= 1);
143 		tlbivaae1is(TLBI_ADDR(va));
144 	} else {
145 		assert(xlat_regime == EL3_REGIME);
146 		assert(xlat_arch_current_el() >= 3);
147 		tlbivae3is(TLBI_ADDR(va));
148 	}
149 }
150 
151 void xlat_arch_tlbi_va_sync(void)
152 {
153 	/*
154 	 * A TLB maintenance instruction can complete at any time after
155 	 * it is issued, but is only guaranteed to be complete after the
156 	 * execution of DSB by the PE that executed the TLB maintenance
157 	 * instruction. After the TLB invalidate instruction is
158 	 * complete, no new memory accesses using the invalidated TLB
159 	 * entries will be observed by any observer of the system
160 	 * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
161 	 * "Ordering and completion of TLB maintenance instructions".
162 	 */
163 	dsbish();
164 
165 	/*
166 	 * The effects of a completed TLB maintenance instruction are
167 	 * only guaranteed to be visible on the PE that executed the
168 	 * instruction after the execution of an ISB instruction by the
169 	 * PE that executed the TLB maintenance instruction.
170 	 */
171 	isb();
172 }
173 
174 int xlat_arch_current_el(void)
175 {
176 	int el = GET_EL(read_CurrentEl());
177 
178 	assert(el > 0);
179 
180 	return el;
181 }
182 
183 void setup_mmu_cfg(unsigned int flags, const uint64_t *base_table,
184 		   unsigned long long max_pa, uintptr_t max_va, int xlat_regime)
185 {
186 	uint64_t mair, ttbr, tcr;
187 	uintptr_t virtual_addr_space_size;
188 
189 	/* Set attributes in the right indices of the MAIR. */
190 	mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
191 	mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);
192 	mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
193 
194 	ttbr = (uint64_t) base_table;
195 
196 	/*
197 	 * Limit the input address ranges and memory region sizes translated
198 	 * using TTBR0 to the given virtual address space size.
199 	 */
200 	assert(max_va < ((uint64_t) UINTPTR_MAX));
201 
202 	virtual_addr_space_size = max_va + 1;
203 	assert(CHECK_VIRT_ADDR_SPACE_SIZE(virtual_addr_space_size));
204 
205 	/*
206 	 * __builtin_ctzll(0) is undefined but here we are guaranteed that
207 	 * virtual_addr_space_size is in the range [1,UINTPTR_MAX].
208 	 */
209 	tcr = (uint64_t) 64 - __builtin_ctzll(virtual_addr_space_size);
210 
211 	/*
212 	 * Set the cacheability and shareability attributes for memory
213 	 * associated with translation table walks.
214 	 */
215 	if ((flags & XLAT_TABLE_NC) != 0) {
216 		/* Inner & outer non-cacheable non-shareable. */
217 		tcr |= TCR_SH_NON_SHAREABLE |
218 			TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC;
219 	} else {
220 		/* Inner & outer WBWA & shareable. */
221 		tcr |= TCR_SH_INNER_SHAREABLE |
222 			TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA;
223 	}
224 
225 	/*
226 	 * It is safer to restrict the max physical address accessible by the
227 	 * hardware as much as possible.
228 	 */
229 	unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa);
230 
231 	if (xlat_regime == EL1_EL0_REGIME) {
232 		/*
233 		 * TCR_EL1.EPD1: Disable translation table walk for addresses
234 		 * that are translated using TTBR1_EL1.
235 		 */
236 		tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT);
237 	} else {
238 		assert(xlat_regime == EL3_REGIME);
239 		tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT);
240 	}
241 
242 	mmu_cfg_params[MMU_CFG_MAIR0] = (uint32_t) mair;
243 	mmu_cfg_params[MMU_CFG_TCR] = (uint32_t) tcr;
244 
245 	/* Set TTBR bits as well */
246 	if (ARM_ARCH_AT_LEAST(8, 2)) {
247 		/*
248 		 * Enable CnP bit so as to share page tables with all PEs. This
249 		 * is mandatory for ARMv8.2 implementations.
250 		 */
251 		ttbr |= TTBR_CNP_BIT;
252 	}
253 
254 	mmu_cfg_params[MMU_CFG_TTBR0_LO] = (uint32_t) ttbr;
255 	mmu_cfg_params[MMU_CFG_TTBR0_HI] = (uint32_t) (ttbr >> 32);
256 }
257