xref: /rk3399_ARM-atf/lib/xlat_tables_v2/aarch32/xlat_tables_arch.c (revision c948f77136c42a92d0bb660543a3600c36dcf7f1)
1 /*
2  * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 
10 #include <platform_def.h>
11 
12 #include <arch.h>
13 #include <arch_features.h>
14 #include <arch_helpers.h>
15 #include <lib/cassert.h>
16 #include <lib/utils_def.h>
17 #include <lib/xlat_tables/xlat_tables_v2.h>
18 
19 #include "../xlat_tables_private.h"
20 
21 #if (ARM_ARCH_MAJOR == 7) && !defined(ARMV7_SUPPORTS_LARGE_PAGE_ADDRESSING)
22 #error ARMv7 target does not support LPAE MMU descriptors
23 #endif
24 
25 /*
26  * Returns true if the provided granule size is supported, false otherwise.
27  */
28 bool xlat_arch_is_granule_size_supported(size_t size)
29 {
30 	/*
31 	 * The library uses the long descriptor translation table format, which
32 	 * supports 4 KiB pages only.
33 	 */
34 	return size == PAGE_SIZE_4KB;
35 }
36 
37 size_t xlat_arch_get_max_supported_granule_size(void)
38 {
39 	return PAGE_SIZE_4KB;
40 }
41 
42 #if ENABLE_ASSERTIONS
43 unsigned long long xlat_arch_get_max_supported_pa(void)
44 {
45 	/* Physical address space size for long descriptor format. */
46 	return (1ULL << 40) - 1ULL;
47 }
48 #endif /* ENABLE_ASSERTIONS*/
49 
50 bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
51 {
52 	if (ctx->xlat_regime == EL1_EL0_REGIME) {
53 		assert(xlat_arch_current_el() == 1U);
54 		return (read_sctlr() & SCTLR_M_BIT) != 0U;
55 	} else {
56 		assert(ctx->xlat_regime == EL2_REGIME);
57 		assert(xlat_arch_current_el() == 2U);
58 		return (read_hsctlr() & HSCTLR_M_BIT) != 0U;
59 	}
60 }
61 
62 bool is_dcache_enabled(void)
63 {
64 	if (IS_IN_EL2()) {
65 		return (read_hsctlr() & HSCTLR_C_BIT) != 0U;
66 	} else {
67 		return (read_sctlr() & SCTLR_C_BIT) != 0U;
68 	}
69 }
70 
71 uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
72 {
73 	if (xlat_regime == EL1_EL0_REGIME) {
74 		return UPPER_ATTRS(XN) | UPPER_ATTRS(PXN);
75 	} else {
76 		assert(xlat_regime == EL2_REGIME);
77 		return UPPER_ATTRS(XN);
78 	}
79 }
80 
81 void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
82 {
83 	/*
84 	 * Ensure the translation table write has drained into memory before
85 	 * invalidating the TLB entry.
86 	 */
87 	dsbishst();
88 
89 	if (xlat_regime == EL1_EL0_REGIME) {
90 		tlbimvaais(TLBI_ADDR(va));
91 	} else {
92 		assert(xlat_regime == EL2_REGIME);
93 		tlbimvahis(TLBI_ADDR(va));
94 	}
95 }
96 
97 void xlat_arch_tlbi_va_sync(void)
98 {
99 	/* Invalidate all entries from branch predictors. */
100 	bpiallis();
101 
102 	/*
103 	 * A TLB maintenance instruction can complete at any time after
104 	 * it is issued, but is only guaranteed to be complete after the
105 	 * execution of DSB by the PE that executed the TLB maintenance
106 	 * instruction. After the TLB invalidate instruction is
107 	 * complete, no new memory accesses using the invalidated TLB
108 	 * entries will be observed by any observer of the system
109 	 * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
110 	 * "Ordering and completion of TLB maintenance instructions".
111 	 */
112 	dsbish();
113 
114 	/*
115 	 * The effects of a completed TLB maintenance instruction are
116 	 * only guaranteed to be visible on the PE that executed the
117 	 * instruction after the execution of an ISB instruction by the
118 	 * PE that executed the TLB maintenance instruction.
119 	 */
120 	isb();
121 }
122 
123 unsigned int xlat_arch_current_el(void)
124 {
125 	if (IS_IN_HYP()) {
126 		return 2U;
127 	} else {
128 		assert(IS_IN_SVC() || IS_IN_MON());
129 		/*
130 		 * If EL3 is in AArch32 mode, all secure PL1 modes (Monitor,
131 		 * System, SVC, Abort, UND, IRQ and FIQ modes) execute at EL3.
132 		 *
133 		 * The PL1&0 translation regime in AArch32 behaves like the
134 		 * EL1&0 regime in AArch64 except for the XN bits, but we set
135 		 * and unset them at the same time, so there's no difference in
136 		 * practice.
137 		 */
138 		return 1U;
139 	}
140 }
141 
142 /*******************************************************************************
143  * Function for enabling the MMU in PL1 or PL2, assuming that the page tables
144  * have already been created.
145  ******************************************************************************/
146 void setup_mmu_cfg(uint64_t *params, unsigned int flags,
147 		   const uint64_t *base_table, unsigned long long max_pa,
148 		   uintptr_t max_va, __unused int xlat_regime)
149 {
150 	uint64_t mair, ttbr0;
151 	uint32_t ttbcr;
152 
153 	/* Set attributes in the right indices of the MAIR */
154 	mair = MAIR0_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
155 	mair |= MAIR0_ATTR_SET(ATTR_IWBWA_OWBWA_NTR,
156 			ATTR_IWBWA_OWBWA_NTR_INDEX);
157 	mair |= MAIR0_ATTR_SET(ATTR_NON_CACHEABLE,
158 			ATTR_NON_CACHEABLE_INDEX);
159 
160 	/*
161 	 * Configure the control register for stage 1 of the PL1&0 or EL2
162 	 * translation regimes.
163 	 */
164 
165 	/* Use the Long-descriptor translation table format. */
166 	ttbcr = TTBCR_EAE_BIT;
167 
168 	if (xlat_regime == EL1_EL0_REGIME) {
169 		assert(IS_IN_SVC() || IS_IN_MON());
170 		/*
171 		 * Disable translation table walk for addresses that are
172 		 * translated using TTBR1. Therefore, only TTBR0 is used.
173 		 */
174 		ttbcr |= TTBCR_EPD1_BIT;
175 	} else {
176 		assert(xlat_regime == EL2_REGIME);
177 		assert(IS_IN_HYP());
178 
179 		/*
180 		 * Set HTCR bits as well. Set HTTBR table properties
181 		 * as Inner & outer WBWA & shareable.
182 		 */
183 		ttbcr |= HTCR_RES1 |
184 			 HTCR_SH0_INNER_SHAREABLE | HTCR_RGN0_OUTER_WBA |
185 			 HTCR_RGN0_INNER_WBA;
186 	}
187 
188 	/*
189 	 * Limit the input address ranges and memory region sizes translated
190 	 * using TTBR0 to the given virtual address space size, if smaller than
191 	 * 32 bits.
192 	 */
193 	if (max_va != UINT32_MAX) {
194 		uintptr_t virtual_addr_space_size = max_va + 1U;
195 
196 		assert(CHECK_VIRT_ADDR_SPACE_SIZE(virtual_addr_space_size));
197 		/*
198 		 * __builtin_ctzll(0) is undefined but here we are guaranteed
199 		 * that virtual_addr_space_size is in the range [1, UINT32_MAX].
200 		 */
201 		int t0sz = 32 - __builtin_ctzll(virtual_addr_space_size);
202 
203 		ttbcr |= (uint32_t) t0sz;
204 	}
205 
206 	/*
207 	 * Set the cacheability and shareability attributes for memory
208 	 * associated with translation table walks using TTBR0.
209 	 */
210 	if ((flags & XLAT_TABLE_NC) != 0U) {
211 		/* Inner & outer non-cacheable non-shareable. */
212 		ttbcr |= TTBCR_SH0_NON_SHAREABLE | TTBCR_RGN0_OUTER_NC |
213 			TTBCR_RGN0_INNER_NC;
214 	} else {
215 		/* Inner & outer WBWA & shareable. */
216 		ttbcr |= TTBCR_SH0_INNER_SHAREABLE | TTBCR_RGN0_OUTER_WBA |
217 			TTBCR_RGN0_INNER_WBA;
218 	}
219 
220 	/* Set TTBR0 bits as well */
221 	ttbr0 = (uint64_t)(uintptr_t) base_table;
222 
223 	if (is_armv8_2_ttcnp_present()) {
224 		/* Enable CnP bit so as to share page tables with all PEs. */
225 		ttbr0 |= TTBR_CNP_BIT;
226 	}
227 
228 	/* Now populate MMU configuration */
229 	params[MMU_CFG_MAIR] = mair;
230 	params[MMU_CFG_TCR] = (uint64_t) ttbcr;
231 	params[MMU_CFG_TTBR0] = ttbr0;
232 }
233