xref: /rk3399_ARM-atf/lib/xlat_tables_v2/aarch32/xlat_tables_arch.c (revision 09d40e0e08283a249e7dce0e106c07c5141f9b7e)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 
10 #include <platform_def.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <lib/cassert.h>
15 #include <lib/utils_def.h>
16 #include <lib/xlat_tables/xlat_tables_v2.h>
17 
18 #include "../xlat_tables_private.h"
19 
20 #if (ARM_ARCH_MAJOR == 7) && !defined(ARMV7_SUPPORTS_LARGE_PAGE_ADDRESSING)
21 #error ARMv7 target does not support LPAE MMU descriptors
22 #endif
23 
24 /*
25  * Returns true if the provided granule size is supported, false otherwise.
26  */
27 bool xlat_arch_is_granule_size_supported(size_t size)
28 {
29 	/*
30 	 * The library uses the long descriptor translation table format, which
31 	 * supports 4 KiB pages only.
32 	 */
33 	return size == PAGE_SIZE_4KB;
34 }
35 
36 size_t xlat_arch_get_max_supported_granule_size(void)
37 {
38 	return PAGE_SIZE_4KB;
39 }
40 
41 #if ENABLE_ASSERTIONS
42 unsigned long long xlat_arch_get_max_supported_pa(void)
43 {
44 	/* Physical address space size for long descriptor format. */
45 	return (1ULL << 40) - 1ULL;
46 }
47 #endif /* ENABLE_ASSERTIONS*/
48 
49 bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
50 {
51 	if (ctx->xlat_regime == EL1_EL0_REGIME) {
52 		assert(xlat_arch_current_el() == 1U);
53 		return (read_sctlr() & SCTLR_M_BIT) != 0U;
54 	} else {
55 		assert(ctx->xlat_regime == EL2_REGIME);
56 		assert(xlat_arch_current_el() == 2U);
57 		return (read_hsctlr() & HSCTLR_M_BIT) != 0U;
58 	}
59 }
60 
61 bool is_dcache_enabled(void)
62 {
63 	if (IS_IN_EL2()) {
64 		return (read_hsctlr() & HSCTLR_C_BIT) != 0U;
65 	} else {
66 		return (read_sctlr() & SCTLR_C_BIT) != 0U;
67 	}
68 }
69 
70 uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
71 {
72 	if (xlat_regime == EL1_EL0_REGIME) {
73 		return UPPER_ATTRS(XN) | UPPER_ATTRS(PXN);
74 	} else {
75 		assert(xlat_regime == EL2_REGIME);
76 		return UPPER_ATTRS(XN);
77 	}
78 }
79 
80 void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
81 {
82 	/*
83 	 * Ensure the translation table write has drained into memory before
84 	 * invalidating the TLB entry.
85 	 */
86 	dsbishst();
87 
88 	if (xlat_regime == EL1_EL0_REGIME) {
89 		tlbimvaais(TLBI_ADDR(va));
90 	} else {
91 		assert(xlat_regime == EL2_REGIME);
92 		tlbimvahis(TLBI_ADDR(va));
93 	}
94 }
95 
96 void xlat_arch_tlbi_va_sync(void)
97 {
98 	/* Invalidate all entries from branch predictors. */
99 	bpiallis();
100 
101 	/*
102 	 * A TLB maintenance instruction can complete at any time after
103 	 * it is issued, but is only guaranteed to be complete after the
104 	 * execution of DSB by the PE that executed the TLB maintenance
105 	 * instruction. After the TLB invalidate instruction is
106 	 * complete, no new memory accesses using the invalidated TLB
107 	 * entries will be observed by any observer of the system
108 	 * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
109 	 * "Ordering and completion of TLB maintenance instructions".
110 	 */
111 	dsbish();
112 
113 	/*
114 	 * The effects of a completed TLB maintenance instruction are
115 	 * only guaranteed to be visible on the PE that executed the
116 	 * instruction after the execution of an ISB instruction by the
117 	 * PE that executed the TLB maintenance instruction.
118 	 */
119 	isb();
120 }
121 
122 unsigned int xlat_arch_current_el(void)
123 {
124 	if (IS_IN_HYP()) {
125 		return 2U;
126 	} else {
127 		assert(IS_IN_SVC() || IS_IN_MON());
128 		/*
129 		 * If EL3 is in AArch32 mode, all secure PL1 modes (Monitor,
130 		 * System, SVC, Abort, UND, IRQ and FIQ modes) execute at EL3.
131 		 *
132 		 * The PL1&0 translation regime in AArch32 behaves like the
133 		 * EL1&0 regime in AArch64 except for the XN bits, but we set
134 		 * and unset them at the same time, so there's no difference in
135 		 * practice.
136 		 */
137 		return 1U;
138 	}
139 }
140 
141 /*******************************************************************************
142  * Function for enabling the MMU in PL1 or PL2, assuming that the page tables
143  * have already been created.
144  ******************************************************************************/
145 void setup_mmu_cfg(uint64_t *params, unsigned int flags,
146 		   const uint64_t *base_table, unsigned long long max_pa,
147 		   uintptr_t max_va, __unused int xlat_regime)
148 {
149 	uint64_t mair, ttbr0;
150 	uint32_t ttbcr;
151 
152 	/* Set attributes in the right indices of the MAIR */
153 	mair = MAIR0_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
154 	mair |= MAIR0_ATTR_SET(ATTR_IWBWA_OWBWA_NTR,
155 			ATTR_IWBWA_OWBWA_NTR_INDEX);
156 	mair |= MAIR0_ATTR_SET(ATTR_NON_CACHEABLE,
157 			ATTR_NON_CACHEABLE_INDEX);
158 
159 	/*
160 	 * Configure the control register for stage 1 of the PL1&0 or EL2
161 	 * translation regimes.
162 	 */
163 
164 	/* Use the Long-descriptor translation table format. */
165 	ttbcr = TTBCR_EAE_BIT;
166 
167 	if (xlat_regime == EL1_EL0_REGIME) {
168 		assert(IS_IN_SVC() || IS_IN_MON());
169 		/*
170 		 * Disable translation table walk for addresses that are
171 		 * translated using TTBR1. Therefore, only TTBR0 is used.
172 		 */
173 		ttbcr |= TTBCR_EPD1_BIT;
174 	} else {
175 		assert(xlat_regime == EL2_REGIME);
176 		assert(IS_IN_HYP());
177 
178 		/*
179 		 * Set HTCR bits as well. Set HTTBR table properties
180 		 * as Inner & outer WBWA & shareable.
181 		 */
182 		ttbcr |= HTCR_RES1 |
183 			 HTCR_SH0_INNER_SHAREABLE | HTCR_RGN0_OUTER_WBA |
184 			 HTCR_RGN0_INNER_WBA;
185 	}
186 
187 	/*
188 	 * Limit the input address ranges and memory region sizes translated
189 	 * using TTBR0 to the given virtual address space size, if smaller than
190 	 * 32 bits.
191 	 */
192 	if (max_va != UINT32_MAX) {
193 		uintptr_t virtual_addr_space_size = max_va + 1U;
194 
195 		assert(CHECK_VIRT_ADDR_SPACE_SIZE(virtual_addr_space_size));
196 		/*
197 		 * __builtin_ctzll(0) is undefined but here we are guaranteed
198 		 * that virtual_addr_space_size is in the range [1, UINT32_MAX].
199 		 */
200 		int t0sz = 32 - __builtin_ctzll(virtual_addr_space_size);
201 
202 		ttbcr |= (uint32_t) t0sz;
203 	}
204 
205 	/*
206 	 * Set the cacheability and shareability attributes for memory
207 	 * associated with translation table walks using TTBR0.
208 	 */
209 	if ((flags & XLAT_TABLE_NC) != 0U) {
210 		/* Inner & outer non-cacheable non-shareable. */
211 		ttbcr |= TTBCR_SH0_NON_SHAREABLE | TTBCR_RGN0_OUTER_NC |
212 			TTBCR_RGN0_INNER_NC;
213 	} else {
214 		/* Inner & outer WBWA & shareable. */
215 		ttbcr |= TTBCR_SH0_INNER_SHAREABLE | TTBCR_RGN0_OUTER_WBA |
216 			TTBCR_RGN0_INNER_WBA;
217 	}
218 
219 	/* Set TTBR0 bits as well */
220 	ttbr0 = (uint64_t)(uintptr_t) base_table;
221 
222 #if ARM_ARCH_AT_LEAST(8, 2)
223 	/*
224 	 * Enable CnP bit so as to share page tables with all PEs. This
225 	 * is mandatory for ARMv8.2 implementations.
226 	 */
227 	ttbr0 |= TTBR_CNP_BIT;
228 #endif
229 
230 	/* Now populate MMU configuration */
231 	params[MMU_CFG_MAIR] = mair;
232 	params[MMU_CFG_TCR] = (uint64_t) ttbcr;
233 	params[MMU_CFG_TTBR0] = ttbr0;
234 }
235