xref: /rk3399_ARM-atf/lib/xlat_tables/xlat_tables_common.c (revision 3a1b7b108aec527597075b48aa929a622fff23da)
1 /*
2  * Copyright (c) 2016-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <cassert.h>
11 #include <common_def.h>
12 #include <debug.h>
13 #include <platform_def.h>
14 #include <string.h>
15 #include <types.h>
16 #include <utils.h>
17 #include <xlat_tables.h>
18 #include "xlat_tables_private.h"
19 
20 #if LOG_LEVEL >= LOG_LEVEL_VERBOSE
21 #define LVL0_SPACER ""
22 #define LVL1_SPACER "  "
23 #define LVL2_SPACER "    "
24 #define LVL3_SPACER "      "
25 #define get_level_spacer(level)		\
26 			(((level) == U(0)) ? LVL0_SPACER : \
27 			(((level) == U(1)) ? LVL1_SPACER : \
28 			(((level) == U(2)) ? LVL2_SPACER : LVL3_SPACER)))
29 #define debug_print(...) tf_printf(__VA_ARGS__)
30 #else
31 #define debug_print(...) ((void)0)
32 #endif
33 
34 #define UNSET_DESC	~0ULL
35 
36 static uint64_t xlat_tables[MAX_XLAT_TABLES][XLAT_TABLE_ENTRIES]
37 			__aligned(XLAT_TABLE_SIZE) __section("xlat_table");
38 
39 static unsigned int next_xlat;
40 static unsigned long long xlat_max_pa;
41 static uintptr_t xlat_max_va;
42 
43 static uint64_t execute_never_mask;
44 static uint64_t ap1_mask;
45 
46 /*
47  * Array of all memory regions stored in order of ascending base address.
48  * The list is terminated by the first entry with size == 0.
49  */
50 static mmap_region_t mmap[MAX_MMAP_REGIONS + 1];
51 
52 
53 void print_mmap(void)
54 {
55 #if LOG_LEVEL >= LOG_LEVEL_VERBOSE
56 	debug_print("mmap:\n");
57 	mmap_region_t *mm = mmap;
58 	while (mm->size) {
59 		debug_print(" VA:%p  PA:0x%llx  size:0x%zx  attr:0x%x\n",
60 				(void *)mm->base_va, mm->base_pa,
61 				mm->size, mm->attr);
62 		++mm;
63 	};
64 	debug_print("\n");
65 #endif
66 }
67 
68 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
69 		     size_t size, unsigned int attr)
70 {
71 	mmap_region_t *mm = mmap;
72 	mmap_region_t *mm_last = mm + ARRAY_SIZE(mmap) - 1;
73 	unsigned long long end_pa = base_pa + size - 1;
74 	uintptr_t end_va = base_va + size - 1;
75 
76 	assert(IS_PAGE_ALIGNED(base_pa));
77 	assert(IS_PAGE_ALIGNED(base_va));
78 	assert(IS_PAGE_ALIGNED(size));
79 
80 	if (!size)
81 		return;
82 
83 	assert(base_pa < end_pa); /* Check for overflows */
84 	assert(base_va < end_va);
85 
86 	assert((base_va + (uintptr_t)size - (uintptr_t)1) <=
87 					(PLAT_VIRT_ADDR_SPACE_SIZE - 1));
88 	assert((base_pa + (unsigned long long)size - 1ULL) <=
89 					(PLAT_PHY_ADDR_SPACE_SIZE - 1));
90 
91 #if ENABLE_ASSERTIONS
92 
93 	/* Check for PAs and VAs overlaps with all other regions */
94 	for (mm = mmap; mm->size; ++mm) {
95 
96 		uintptr_t mm_end_va = mm->base_va + mm->size - 1;
97 
98 		/*
99 		 * Check if one of the regions is completely inside the other
100 		 * one.
101 		 */
102 		int fully_overlapped_va =
103 			((base_va >= mm->base_va) && (end_va <= mm_end_va)) ||
104 			((mm->base_va >= base_va) && (mm_end_va <= end_va));
105 
106 		/*
107 		 * Full VA overlaps are only allowed if both regions are
108 		 * identity mapped (zero offset) or have the same VA to PA
109 		 * offset. Also, make sure that it's not the exact same area.
110 		 */
111 		if (fully_overlapped_va) {
112 			assert((mm->base_va - mm->base_pa) ==
113 			       (base_va - base_pa));
114 			assert((base_va != mm->base_va) || (size != mm->size));
115 		} else {
116 			/*
117 			 * If the regions do not have fully overlapping VAs,
118 			 * then they must have fully separated VAs and PAs.
119 			 * Partial overlaps are not allowed
120 			 */
121 
122 			unsigned long long mm_end_pa =
123 						     mm->base_pa + mm->size - 1;
124 
125 			int separated_pa =
126 				(end_pa < mm->base_pa) || (base_pa > mm_end_pa);
127 			int separated_va =
128 				(end_va < mm->base_va) || (base_va > mm_end_va);
129 
130 			assert(separated_va && separated_pa);
131 		}
132 	}
133 
134 	mm = mmap; /* Restore pointer to the start of the array */
135 
136 #endif /* ENABLE_ASSERTIONS */
137 
138 	/* Find correct place in mmap to insert new region */
139 	while (mm->base_va < base_va && mm->size)
140 		++mm;
141 
142 	/*
143 	 * If a section is contained inside another one with the same base
144 	 * address, it must be placed after the one it is contained in:
145 	 *
146 	 * 1st |-----------------------|
147 	 * 2nd |------------|
148 	 * 3rd |------|
149 	 *
150 	 * This is required for mmap_region_attr() to get the attributes of the
151 	 * small region correctly.
152 	 */
153 	while ((mm->base_va == base_va) && (mm->size > size))
154 		++mm;
155 
156 	/* Make room for new region by moving other regions up by one place */
157 	memmove(mm + 1, mm, (uintptr_t)mm_last - (uintptr_t)mm);
158 
159 	/* Check we haven't lost the empty sentinal from the end of the array */
160 	assert(mm_last->size == 0);
161 
162 	mm->base_pa = base_pa;
163 	mm->base_va = base_va;
164 	mm->size = size;
165 	mm->attr = attr;
166 
167 	if (end_pa > xlat_max_pa)
168 		xlat_max_pa = end_pa;
169 	if (end_va > xlat_max_va)
170 		xlat_max_va = end_va;
171 }
172 
173 void mmap_add(const mmap_region_t *mm)
174 {
175 	while (mm->size) {
176 		mmap_add_region(mm->base_pa, mm->base_va, mm->size, mm->attr);
177 		++mm;
178 	}
179 }
180 
181 static uint64_t mmap_desc(unsigned int attr, unsigned long long addr_pa,
182 			  unsigned int level)
183 {
184 	uint64_t desc;
185 	int mem_type;
186 
187 	/* Make sure that the granularity is fine enough to map this address. */
188 	assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0);
189 
190 	desc = addr_pa;
191 	/*
192 	 * There are different translation table descriptors for level 3 and the
193 	 * rest.
194 	 */
195 	desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
196 	desc |= (attr & MT_NS) ? LOWER_ATTRS(NS) : 0;
197 	desc |= (attr & MT_RW) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
198 	desc |= LOWER_ATTRS(ACCESS_FLAG);
199 	desc |= ap1_mask;
200 
201 	/*
202 	 * Deduce shareability domain and executability of the memory region
203 	 * from the memory type.
204 	 *
205 	 * Data accesses to device memory and non-cacheable normal memory are
206 	 * coherent for all observers in the system, and correspondingly are
207 	 * always treated as being Outer Shareable. Therefore, for these 2 types
208 	 * of memory, it is not strictly needed to set the shareability field
209 	 * in the translation tables.
210 	 */
211 	mem_type = MT_TYPE(attr);
212 	if (mem_type == MT_DEVICE) {
213 		desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
214 		/*
215 		 * Always map device memory as execute-never.
216 		 * This is to avoid the possibility of a speculative instruction
217 		 * fetch, which could be an issue if this memory region
218 		 * corresponds to a read-sensitive peripheral.
219 		 */
220 		desc |= execute_never_mask;
221 
222 	} else { /* Normal memory */
223 		/*
224 		 * Always map read-write normal memory as execute-never.
225 		 * (Trusted Firmware doesn't self-modify its code, therefore
226 		 * R/W memory is reserved for data storage, which must not be
227 		 * executable.)
228 		 * Note that setting the XN bit here is for consistency only.
229 		 * The function that enables the MMU sets the SCTLR_ELx.WXN bit,
230 		 * which makes any writable memory region to be treated as
231 		 * execute-never, regardless of the value of the XN bit in the
232 		 * translation table.
233 		 *
234 		 * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
235 		 * attribute to figure out the value of the XN bit.
236 		 */
237 		if ((attr & MT_RW) || (attr & MT_EXECUTE_NEVER)) {
238 			desc |= execute_never_mask;
239 		}
240 
241 		if (mem_type == MT_MEMORY) {
242 			desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH);
243 		} else {
244 			assert(mem_type == MT_NON_CACHEABLE);
245 			desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
246 		}
247 	}
248 
249 	debug_print((mem_type == MT_MEMORY) ? "MEM" :
250 		((mem_type == MT_NON_CACHEABLE) ? "NC" : "DEV"));
251 	debug_print(attr & MT_RW ? "-RW" : "-RO");
252 	debug_print(attr & MT_NS ? "-NS" : "-S");
253 	debug_print(attr & MT_EXECUTE_NEVER ? "-XN" : "-EXEC");
254 	return desc;
255 }
256 
257 /*
258  * Look for the innermost region that contains the area at `base_va` with size
259  * `size`. Populate *attr with the attributes of this region.
260  *
261  * On success, this function returns 0.
262  * If there are partial overlaps (meaning that a smaller size is needed) or if
263  * the region can't be found in the given area, it returns -1. In this case the
264  * value pointed by attr should be ignored by the caller.
265  */
266 static int mmap_region_attr(mmap_region_t *mm, uintptr_t base_va,
267 			    size_t size, unsigned int *attr)
268 {
269 	/* Don't assume that the area is contained in the first region */
270 	int ret = -1;
271 
272 	/*
273 	 * Get attributes from last (innermost) region that contains the
274 	 * requested area. Don't stop as soon as one region doesn't contain it
275 	 * because there may be other internal regions that contain this area:
276 	 *
277 	 * |-----------------------------1-----------------------------|
278 	 * |----2----|     |-------3-------|    |----5----|
279 	 *                   |--4--|
280 	 *
281 	 *                   |---| <- Area we want the attributes of.
282 	 *
283 	 * In this example, the area is contained in regions 1, 3 and 4 but not
284 	 * in region 2. The loop shouldn't stop at region 2 as inner regions
285 	 * have priority over outer regions, it should stop at region 5.
286 	 */
287 	for (;; ++mm) {
288 
289 		if (!mm->size)
290 			return ret; /* Reached end of list */
291 
292 		if (mm->base_va > base_va + size - 1)
293 			return ret; /* Next region is after area so end */
294 
295 		if (mm->base_va + mm->size - 1 < base_va)
296 			continue; /* Next region has already been overtaken */
297 
298 		if (!ret && mm->attr == *attr)
299 			continue; /* Region doesn't override attribs so skip */
300 
301 		if (mm->base_va > base_va ||
302 			mm->base_va + mm->size - 1 < base_va + size - 1)
303 			return -1; /* Region doesn't fully cover our area */
304 
305 		*attr = mm->attr;
306 		ret = 0;
307 	}
308 	return ret;
309 }
310 
311 static mmap_region_t *init_xlation_table_inner(mmap_region_t *mm,
312 					uintptr_t base_va,
313 					uint64_t *table,
314 					unsigned int level)
315 {
316 	assert(level >= XLAT_TABLE_LEVEL_MIN && level <= XLAT_TABLE_LEVEL_MAX);
317 
318 	unsigned int level_size_shift =
319 		       L0_XLAT_ADDRESS_SHIFT - level * XLAT_TABLE_ENTRIES_SHIFT;
320 	u_register_t level_size = (u_register_t)1 << level_size_shift;
321 	u_register_t level_index_mask =
322 		((u_register_t)XLAT_TABLE_ENTRIES_MASK) << level_size_shift;
323 
324 	debug_print("New xlat table:\n");
325 
326 	do  {
327 		uint64_t desc = UNSET_DESC;
328 
329 		if (!mm->size) {
330 			/* Done mapping regions; finish zeroing the table */
331 			desc = INVALID_DESC;
332 		} else if (mm->base_va + mm->size - 1 < base_va) {
333 			/* This area is after the region so get next region */
334 			++mm;
335 			continue;
336 		}
337 
338 		debug_print("%s VA:%p size:0x%llx ", get_level_spacer(level),
339 			(void *)base_va, (unsigned long long)level_size);
340 
341 		if (mm->base_va > base_va + level_size - 1) {
342 			/* Next region is after this area. Nothing to map yet */
343 			desc = INVALID_DESC;
344 		/* Make sure that the current level allows block descriptors */
345 		} else if (level >= XLAT_BLOCK_LEVEL_MIN) {
346 			/*
347 			 * Try to get attributes of this area. It will fail if
348 			 * there are partially overlapping regions. On success,
349 			 * it will return the innermost region's attributes.
350 			 */
351 			unsigned int attr;
352 			int r = mmap_region_attr(mm, base_va, level_size, &attr);
353 
354 			if (!r) {
355 				desc = mmap_desc(attr,
356 					base_va - mm->base_va + mm->base_pa,
357 					level);
358 			}
359 		}
360 
361 		if (desc == UNSET_DESC) {
362 			/* Area not covered by a region so need finer table */
363 			uint64_t *new_table = xlat_tables[next_xlat++];
364 			assert(next_xlat <= MAX_XLAT_TABLES);
365 			desc = TABLE_DESC | (uintptr_t)new_table;
366 
367 			/* Recurse to fill in new table */
368 			mm = init_xlation_table_inner(mm, base_va,
369 						new_table, level+1);
370 		}
371 
372 		debug_print("\n");
373 
374 		*table++ = desc;
375 		base_va += level_size;
376 	} while ((base_va & level_index_mask) &&
377 		 (base_va - 1 < PLAT_VIRT_ADDR_SPACE_SIZE - 1));
378 
379 	return mm;
380 }
381 
382 void init_xlation_table(uintptr_t base_va, uint64_t *table,
383 			unsigned int level, uintptr_t *max_va,
384 			unsigned long long *max_pa)
385 {
386 	int el = xlat_arch_current_el();
387 
388 	execute_never_mask = xlat_arch_get_xn_desc(el);
389 
390 	if (el == 3) {
391 		ap1_mask = LOWER_ATTRS(AP_ONE_VA_RANGE_RES1);
392 	} else {
393 		assert(el == 1);
394 		ap1_mask = 0;
395 	}
396 
397 	init_xlation_table_inner(mmap, base_va, table, level);
398 	*max_va = xlat_max_va;
399 	*max_pa = xlat_max_pa;
400 }
401