xref: /rk3399_ARM-atf/lib/xlat_tables/xlat_tables_common.c (revision 39b6cc66d670be41d6b51b644beb675f386a4240)
1 /*
2  * Copyright (c) 2016-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <cassert.h>
11 #include <common_def.h>
12 #include <debug.h>
13 #include <platform_def.h>
14 #include <stdbool.h>
15 #include <stdint.h>
16 #include <string.h>
17 #include <utils.h>
18 #include <xlat_tables.h>
19 #include "xlat_tables_private.h"
20 
21 #if LOG_LEVEL >= LOG_LEVEL_VERBOSE
22 #define LVL0_SPACER ""
23 #define LVL1_SPACER "  "
24 #define LVL2_SPACER "    "
25 #define LVL3_SPACER "      "
26 #define get_level_spacer(level)		\
27 			(((level) == U(0)) ? LVL0_SPACER : \
28 			(((level) == U(1)) ? LVL1_SPACER : \
29 			(((level) == U(2)) ? LVL2_SPACER : LVL3_SPACER)))
30 #define debug_print(...) printf(__VA_ARGS__)
31 #else
32 #define debug_print(...) ((void)0)
33 #endif
34 
35 #define UNSET_DESC	~0ULL
36 #define MT_UNKNOWN	~0U
37 
38 static uint64_t xlat_tables[MAX_XLAT_TABLES][XLAT_TABLE_ENTRIES]
39 			__aligned(XLAT_TABLE_SIZE) __section("xlat_table");
40 
41 static unsigned int next_xlat;
42 static unsigned long long xlat_max_pa;
43 static uintptr_t xlat_max_va;
44 
45 static uint64_t execute_never_mask;
46 static uint64_t ap1_mask;
47 
48 /*
49  * Array of all memory regions stored in order of ascending base address.
50  * The list is terminated by the first entry with size == 0.
51  */
52 static mmap_region_t mmap[MAX_MMAP_REGIONS + 1];
53 
54 
55 void print_mmap(void)
56 {
57 #if LOG_LEVEL >= LOG_LEVEL_VERBOSE
58 	debug_print("mmap:\n");
59 	mmap_region_t *mm = mmap;
60 	while (mm->size != 0U) {
61 		debug_print(" VA:%p  PA:0x%llx  size:0x%zx  attr:0x%x\n",
62 				(void *)mm->base_va, mm->base_pa,
63 				mm->size, mm->attr);
64 		++mm;
65 	};
66 	debug_print("\n");
67 #endif
68 }
69 
70 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
71 		     size_t size, unsigned int attr)
72 {
73 	mmap_region_t *mm = mmap;
74 	const mmap_region_t *mm_last = mm + ARRAY_SIZE(mmap) - 1U;
75 	unsigned long long end_pa = base_pa + size - 1U;
76 	uintptr_t end_va = base_va + size - 1U;
77 
78 	assert(IS_PAGE_ALIGNED(base_pa));
79 	assert(IS_PAGE_ALIGNED(base_va));
80 	assert(IS_PAGE_ALIGNED(size));
81 
82 	if (size == 0U)
83 		return;
84 
85 	assert(base_pa < end_pa); /* Check for overflows */
86 	assert(base_va < end_va);
87 
88 	assert((base_va + (uintptr_t)size - (uintptr_t)1) <=
89 					(PLAT_VIRT_ADDR_SPACE_SIZE - 1U));
90 	assert((base_pa + (unsigned long long)size - 1ULL) <=
91 					(PLAT_PHY_ADDR_SPACE_SIZE - 1U));
92 
93 #if ENABLE_ASSERTIONS
94 
95 	/* Check for PAs and VAs overlaps with all other regions */
96 	for (mm = mmap; mm->size; ++mm) {
97 
98 		uintptr_t mm_end_va = mm->base_va + mm->size - 1U;
99 
100 		/*
101 		 * Check if one of the regions is completely inside the other
102 		 * one.
103 		 */
104 		bool fully_overlapped_va =
105 			((base_va >= mm->base_va) && (end_va <= mm_end_va)) ||
106 			((mm->base_va >= base_va) && (mm_end_va <= end_va));
107 
108 		/*
109 		 * Full VA overlaps are only allowed if both regions are
110 		 * identity mapped (zero offset) or have the same VA to PA
111 		 * offset. Also, make sure that it's not the exact same area.
112 		 */
113 		if (fully_overlapped_va) {
114 			assert((mm->base_va - mm->base_pa) ==
115 			       (base_va - base_pa));
116 			assert((base_va != mm->base_va) || (size != mm->size));
117 		} else {
118 			/*
119 			 * If the regions do not have fully overlapping VAs,
120 			 * then they must have fully separated VAs and PAs.
121 			 * Partial overlaps are not allowed
122 			 */
123 
124 			unsigned long long mm_end_pa =
125 						     mm->base_pa + mm->size - 1;
126 
127 			bool separated_pa = (end_pa < mm->base_pa) ||
128 				(base_pa > mm_end_pa);
129 			bool separated_va = (end_va < mm->base_va) ||
130 				(base_va > mm_end_va);
131 
132 			assert(separated_va && separated_pa);
133 		}
134 	}
135 
136 	mm = mmap; /* Restore pointer to the start of the array */
137 
138 #endif /* ENABLE_ASSERTIONS */
139 
140 	/* Find correct place in mmap to insert new region */
141 	while ((mm->base_va < base_va) && (mm->size != 0U))
142 		++mm;
143 
144 	/*
145 	 * If a section is contained inside another one with the same base
146 	 * address, it must be placed after the one it is contained in:
147 	 *
148 	 * 1st |-----------------------|
149 	 * 2nd |------------|
150 	 * 3rd |------|
151 	 *
152 	 * This is required for mmap_region_attr() to get the attributes of the
153 	 * small region correctly.
154 	 */
155 	while ((mm->base_va == base_va) && (mm->size > size))
156 		++mm;
157 
158 	/* Make room for new region by moving other regions up by one place */
159 	(void)memmove(mm + 1, mm, (uintptr_t)mm_last - (uintptr_t)mm);
160 
161 	/* Check we haven't lost the empty sentinal from the end of the array */
162 	assert(mm_last->size == 0U);
163 
164 	mm->base_pa = base_pa;
165 	mm->base_va = base_va;
166 	mm->size = size;
167 	mm->attr = attr;
168 
169 	if (end_pa > xlat_max_pa)
170 		xlat_max_pa = end_pa;
171 	if (end_va > xlat_max_va)
172 		xlat_max_va = end_va;
173 }
174 
175 void mmap_add(const mmap_region_t *mm)
176 {
177 	const mmap_region_t *mm_cursor = mm;
178 
179 	while (mm_cursor->size != 0U) {
180 		mmap_add_region(mm_cursor->base_pa, mm_cursor->base_va,
181 				mm_cursor->size, mm_cursor->attr);
182 		mm_cursor++;
183 	}
184 }
185 
186 static uint64_t mmap_desc(unsigned int attr, unsigned long long addr_pa,
187 			  unsigned int level)
188 {
189 	uint64_t desc;
190 	int mem_type;
191 
192 	/* Make sure that the granularity is fine enough to map this address. */
193 	assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0U);
194 
195 	desc = addr_pa;
196 	/*
197 	 * There are different translation table descriptors for level 3 and the
198 	 * rest.
199 	 */
200 	desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
201 	desc |= ((attr & MT_NS) != 0U) ? LOWER_ATTRS(NS) : 0U;
202 	desc |= ((attr & MT_RW) != 0U) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
203 	/*
204 	 * Always set the access flag, as this library assumes access flag
205 	 * faults aren't managed.
206 	 */
207 	desc |= LOWER_ATTRS(ACCESS_FLAG);
208 	desc |= ap1_mask;
209 
210 	/*
211 	 * Deduce shareability domain and executability of the memory region
212 	 * from the memory type.
213 	 *
214 	 * Data accesses to device memory and non-cacheable normal memory are
215 	 * coherent for all observers in the system, and correspondingly are
216 	 * always treated as being Outer Shareable. Therefore, for these 2 types
217 	 * of memory, it is not strictly needed to set the shareability field
218 	 * in the translation tables.
219 	 */
220 	mem_type = MT_TYPE(attr);
221 	if (mem_type == MT_DEVICE) {
222 		desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
223 		/*
224 		 * Always map device memory as execute-never.
225 		 * This is to avoid the possibility of a speculative instruction
226 		 * fetch, which could be an issue if this memory region
227 		 * corresponds to a read-sensitive peripheral.
228 		 */
229 		desc |= execute_never_mask;
230 
231 	} else { /* Normal memory */
232 		/*
233 		 * Always map read-write normal memory as execute-never.
234 		 * This library assumes that it is used by software that does
235 		 * not self-modify its code, therefore R/W memory is reserved
236 		 * for data storage, which must not be executable.
237 		 *
238 		 * Note that setting the XN bit here is for consistency only.
239 		 * The function that enables the MMU sets the SCTLR_ELx.WXN bit,
240 		 * which makes any writable memory region to be treated as
241 		 * execute-never, regardless of the value of the XN bit in the
242 		 * translation table.
243 		 *
244 		 * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
245 		 * attribute to figure out the value of the XN bit.
246 		 */
247 		if (((attr & MT_RW) != 0U) || ((attr & MT_EXECUTE_NEVER) != 0U)) {
248 			desc |= execute_never_mask;
249 		}
250 
251 		if (mem_type == MT_MEMORY) {
252 			desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH);
253 		} else {
254 			assert(mem_type == MT_NON_CACHEABLE);
255 			desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
256 		}
257 	}
258 
259 	debug_print((mem_type == MT_MEMORY) ? "MEM" :
260 		((mem_type == MT_NON_CACHEABLE) ? "NC" : "DEV"));
261 	debug_print(((attr & MT_RW) != 0U) ? "-RW" : "-RO");
262 	debug_print(((attr & MT_NS) != 0U) ? "-NS" : "-S");
263 	debug_print(((attr & MT_EXECUTE_NEVER) != 0U) ? "-XN" : "-EXEC");
264 	return desc;
265 }
266 
267 /*
268  * Look for the innermost region that contains the area at `base_va` with size
269  * `size`. Populate *attr with the attributes of this region.
270  *
271  * On success, this function returns 0.
272  * If there are partial overlaps (meaning that a smaller size is needed) or if
273  * the region can't be found in the given area, it returns MT_UNKNOWN. In this
274  * case the value pointed by attr should be ignored by the caller.
275  */
276 static unsigned int mmap_region_attr(const mmap_region_t *mm, uintptr_t base_va,
277 				     size_t size, unsigned int *attr)
278 {
279 	/* Don't assume that the area is contained in the first region */
280 	unsigned int ret = MT_UNKNOWN;
281 
282 	/*
283 	 * Get attributes from last (innermost) region that contains the
284 	 * requested area. Don't stop as soon as one region doesn't contain it
285 	 * because there may be other internal regions that contain this area:
286 	 *
287 	 * |-----------------------------1-----------------------------|
288 	 * |----2----|     |-------3-------|    |----5----|
289 	 *                   |--4--|
290 	 *
291 	 *                   |---| <- Area we want the attributes of.
292 	 *
293 	 * In this example, the area is contained in regions 1, 3 and 4 but not
294 	 * in region 2. The loop shouldn't stop at region 2 as inner regions
295 	 * have priority over outer regions, it should stop at region 5.
296 	 */
297 	for ( ; ; ++mm) {
298 
299 		if (mm->size == 0U)
300 			return ret; /* Reached end of list */
301 
302 		if (mm->base_va > (base_va + size - 1U))
303 			return ret; /* Next region is after area so end */
304 
305 		if ((mm->base_va + mm->size - 1U) < base_va)
306 			continue; /* Next region has already been overtaken */
307 
308 		if ((ret == 0U) && (mm->attr == *attr))
309 			continue; /* Region doesn't override attribs so skip */
310 
311 		if ((mm->base_va > base_va) ||
312 			((mm->base_va + mm->size - 1U) < (base_va + size - 1U)))
313 			return MT_UNKNOWN; /* Region doesn't fully cover area */
314 
315 		*attr = mm->attr;
316 		ret = 0U;
317 	}
318 	return ret;
319 }
320 
321 static mmap_region_t *init_xlation_table_inner(mmap_region_t *mm,
322 					uintptr_t base_va,
323 					uint64_t *table,
324 					unsigned int level)
325 {
326 	assert((level >= XLAT_TABLE_LEVEL_MIN) &&
327 	       (level <= XLAT_TABLE_LEVEL_MAX));
328 
329 	unsigned int level_size_shift =
330 		       L0_XLAT_ADDRESS_SHIFT - level * XLAT_TABLE_ENTRIES_SHIFT;
331 	u_register_t level_size = (u_register_t)1 << level_size_shift;
332 	u_register_t level_index_mask =
333 		((u_register_t)XLAT_TABLE_ENTRIES_MASK) << level_size_shift;
334 
335 	debug_print("New xlat table:\n");
336 
337 	do  {
338 		uint64_t desc = UNSET_DESC;
339 
340 		if (mm->size == 0U) {
341 			/* Done mapping regions; finish zeroing the table */
342 			desc = INVALID_DESC;
343 		} else if ((mm->base_va + mm->size - 1U) < base_va) {
344 			/* This area is after the region so get next region */
345 			++mm;
346 			continue;
347 		}
348 
349 		debug_print("%s VA:%p size:0x%llx ", get_level_spacer(level),
350 			(void *)base_va, (unsigned long long)level_size);
351 
352 		if (mm->base_va > (base_va + level_size - 1U)) {
353 			/* Next region is after this area. Nothing to map yet */
354 			desc = INVALID_DESC;
355 		/* Make sure that the current level allows block descriptors */
356 		} else if (level >= XLAT_BLOCK_LEVEL_MIN) {
357 			/*
358 			 * Try to get attributes of this area. It will fail if
359 			 * there are partially overlapping regions. On success,
360 			 * it will return the innermost region's attributes.
361 			 */
362 			unsigned int attr;
363 			unsigned int r = mmap_region_attr(mm, base_va,
364 							  level_size, &attr);
365 
366 			if (r == 0U) {
367 				desc = mmap_desc(attr,
368 					base_va - mm->base_va + mm->base_pa,
369 					level);
370 			}
371 		}
372 
373 		if (desc == UNSET_DESC) {
374 			/* Area not covered by a region so need finer table */
375 			uint64_t *new_table = xlat_tables[next_xlat];
376 
377 			next_xlat++;
378 			assert(next_xlat <= MAX_XLAT_TABLES);
379 			desc = TABLE_DESC | (uintptr_t)new_table;
380 
381 			/* Recurse to fill in new table */
382 			mm = init_xlation_table_inner(mm, base_va,
383 						new_table, level + 1U);
384 		}
385 
386 		debug_print("\n");
387 
388 		*table++ = desc;
389 		base_va += level_size;
390 	} while ((base_va & level_index_mask) &&
391 		 ((base_va - 1U) < (PLAT_VIRT_ADDR_SPACE_SIZE - 1U)));
392 
393 	return mm;
394 }
395 
396 void init_xlation_table(uintptr_t base_va, uint64_t *table,
397 			unsigned int level, uintptr_t *max_va,
398 			unsigned long long *max_pa)
399 {
400 	unsigned int el = xlat_arch_current_el();
401 
402 	execute_never_mask = xlat_arch_get_xn_desc(el);
403 
404 	if (el == 3U) {
405 		ap1_mask = LOWER_ATTRS(AP_ONE_VA_RANGE_RES1);
406 	} else {
407 		assert(el == 1U);
408 		ap1_mask = 0ULL;
409 	}
410 
411 	init_xlation_table_inner(mmap, base_va, table, level);
412 	*max_va = xlat_max_va;
413 	*max_pa = xlat_max_pa;
414 }
415