xref: /rk3399_ARM-atf/lib/xlat_tables/xlat_tables_common.c (revision 1dd6c0513276ea0fa8ef1616d4ecb559eb32edba)
1 /*
2  * Copyright (c) 2016-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <cassert.h>
11 #include <common_def.h>
12 #include <debug.h>
13 #include <platform_def.h>
14 #include <string.h>
15 #include <types.h>
16 #include <utils.h>
17 #include <xlat_tables.h>
18 #include "xlat_tables_private.h"
19 
20 #if LOG_LEVEL >= LOG_LEVEL_VERBOSE
21 #define LVL0_SPACER ""
22 #define LVL1_SPACER "  "
23 #define LVL2_SPACER "    "
24 #define LVL3_SPACER "      "
25 #define get_level_spacer(level)		\
26 			(((level) == U(0)) ? LVL0_SPACER : \
27 			(((level) == U(1)) ? LVL1_SPACER : \
28 			(((level) == U(2)) ? LVL2_SPACER : LVL3_SPACER)))
29 #define debug_print(...) tf_printf(__VA_ARGS__)
30 #else
31 #define debug_print(...) ((void)0)
32 #endif
33 
34 #define UNSET_DESC	~0ULL
35 
36 static uint64_t xlat_tables[MAX_XLAT_TABLES][XLAT_TABLE_ENTRIES]
37 			__aligned(XLAT_TABLE_SIZE) __section("xlat_table");
38 
39 static unsigned int next_xlat;
40 static unsigned long long xlat_max_pa;
41 static uintptr_t xlat_max_va;
42 
43 static uint64_t execute_never_mask;
44 static uint64_t ap1_mask;
45 
46 /*
47  * Array of all memory regions stored in order of ascending base address.
48  * The list is terminated by the first entry with size == 0.
49  */
50 static mmap_region_t mmap[MAX_MMAP_REGIONS + 1];
51 
52 
53 void print_mmap(void)
54 {
55 #if LOG_LEVEL >= LOG_LEVEL_VERBOSE
56 	debug_print("mmap:\n");
57 	mmap_region_t *mm = mmap;
58 	while (mm->size) {
59 		debug_print(" VA:%p  PA:0x%llx  size:0x%zx  attr:0x%x\n",
60 				(void *)mm->base_va, mm->base_pa,
61 				mm->size, mm->attr);
62 		++mm;
63 	};
64 	debug_print("\n");
65 #endif
66 }
67 
68 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
69 		     size_t size, unsigned int attr)
70 {
71 	mmap_region_t *mm = mmap;
72 	mmap_region_t *mm_last = mm + ARRAY_SIZE(mmap) - 1;
73 	unsigned long long end_pa = base_pa + size - 1;
74 	uintptr_t end_va = base_va + size - 1;
75 
76 	assert(IS_PAGE_ALIGNED(base_pa));
77 	assert(IS_PAGE_ALIGNED(base_va));
78 	assert(IS_PAGE_ALIGNED(size));
79 
80 	if (!size)
81 		return;
82 
83 	assert(base_pa < end_pa); /* Check for overflows */
84 	assert(base_va < end_va);
85 
86 	assert((base_va + (uintptr_t)size - (uintptr_t)1) <=
87 					(PLAT_VIRT_ADDR_SPACE_SIZE - 1));
88 	assert((base_pa + (unsigned long long)size - 1ULL) <=
89 					(PLAT_PHY_ADDR_SPACE_SIZE - 1));
90 
91 #if ENABLE_ASSERTIONS
92 
93 	/* Check for PAs and VAs overlaps with all other regions */
94 	for (mm = mmap; mm->size; ++mm) {
95 
96 		uintptr_t mm_end_va = mm->base_va + mm->size - 1;
97 
98 		/*
99 		 * Check if one of the regions is completely inside the other
100 		 * one.
101 		 */
102 		int fully_overlapped_va =
103 			((base_va >= mm->base_va) && (end_va <= mm_end_va)) ||
104 			((mm->base_va >= base_va) && (mm_end_va <= end_va));
105 
106 		/*
107 		 * Full VA overlaps are only allowed if both regions are
108 		 * identity mapped (zero offset) or have the same VA to PA
109 		 * offset. Also, make sure that it's not the exact same area.
110 		 */
111 		if (fully_overlapped_va) {
112 			assert((mm->base_va - mm->base_pa) ==
113 			       (base_va - base_pa));
114 			assert((base_va != mm->base_va) || (size != mm->size));
115 		} else {
116 			/*
117 			 * If the regions do not have fully overlapping VAs,
118 			 * then they must have fully separated VAs and PAs.
119 			 * Partial overlaps are not allowed
120 			 */
121 
122 			unsigned long long mm_end_pa =
123 						     mm->base_pa + mm->size - 1;
124 
125 			int separated_pa =
126 				(end_pa < mm->base_pa) || (base_pa > mm_end_pa);
127 			int separated_va =
128 				(end_va < mm->base_va) || (base_va > mm_end_va);
129 
130 			assert(separated_va && separated_pa);
131 		}
132 	}
133 
134 	mm = mmap; /* Restore pointer to the start of the array */
135 
136 #endif /* ENABLE_ASSERTIONS */
137 
138 	/* Find correct place in mmap to insert new region */
139 	while (mm->base_va < base_va && mm->size)
140 		++mm;
141 
142 	/*
143 	 * If a section is contained inside another one with the same base
144 	 * address, it must be placed after the one it is contained in:
145 	 *
146 	 * 1st |-----------------------|
147 	 * 2nd |------------|
148 	 * 3rd |------|
149 	 *
150 	 * This is required for mmap_region_attr() to get the attributes of the
151 	 * small region correctly.
152 	 */
153 	while ((mm->base_va == base_va) && (mm->size > size))
154 		++mm;
155 
156 	/* Make room for new region by moving other regions up by one place */
157 	memmove(mm + 1, mm, (uintptr_t)mm_last - (uintptr_t)mm);
158 
159 	/* Check we haven't lost the empty sentinal from the end of the array */
160 	assert(mm_last->size == 0);
161 
162 	mm->base_pa = base_pa;
163 	mm->base_va = base_va;
164 	mm->size = size;
165 	mm->attr = attr;
166 
167 	if (end_pa > xlat_max_pa)
168 		xlat_max_pa = end_pa;
169 	if (end_va > xlat_max_va)
170 		xlat_max_va = end_va;
171 }
172 
173 void mmap_add(const mmap_region_t *mm)
174 {
175 	while (mm->size) {
176 		mmap_add_region(mm->base_pa, mm->base_va, mm->size, mm->attr);
177 		++mm;
178 	}
179 }
180 
181 static uint64_t mmap_desc(unsigned int attr, unsigned long long addr_pa,
182 			  unsigned int level)
183 {
184 	uint64_t desc;
185 	int mem_type;
186 
187 	/* Make sure that the granularity is fine enough to map this address. */
188 	assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0);
189 
190 	desc = addr_pa;
191 	/*
192 	 * There are different translation table descriptors for level 3 and the
193 	 * rest.
194 	 */
195 	desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
196 	desc |= (attr & MT_NS) ? LOWER_ATTRS(NS) : 0;
197 	desc |= (attr & MT_RW) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
198 	/*
199 	 * Always set the access flag, as this library assumes access flag
200 	 * faults aren't managed.
201 	 */
202 	desc |= LOWER_ATTRS(ACCESS_FLAG);
203 	desc |= ap1_mask;
204 
205 	/*
206 	 * Deduce shareability domain and executability of the memory region
207 	 * from the memory type.
208 	 *
209 	 * Data accesses to device memory and non-cacheable normal memory are
210 	 * coherent for all observers in the system, and correspondingly are
211 	 * always treated as being Outer Shareable. Therefore, for these 2 types
212 	 * of memory, it is not strictly needed to set the shareability field
213 	 * in the translation tables.
214 	 */
215 	mem_type = MT_TYPE(attr);
216 	if (mem_type == MT_DEVICE) {
217 		desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
218 		/*
219 		 * Always map device memory as execute-never.
220 		 * This is to avoid the possibility of a speculative instruction
221 		 * fetch, which could be an issue if this memory region
222 		 * corresponds to a read-sensitive peripheral.
223 		 */
224 		desc |= execute_never_mask;
225 
226 	} else { /* Normal memory */
227 		/*
228 		 * Always map read-write normal memory as execute-never.
229 		 * This library assumes that it is used by software that does
230 		 * not self-modify its code, therefore R/W memory is reserved
231 		 * for data storage, which must not be executable.
232 		 *
233 		 * Note that setting the XN bit here is for consistency only.
234 		 * The function that enables the MMU sets the SCTLR_ELx.WXN bit,
235 		 * which makes any writable memory region to be treated as
236 		 * execute-never, regardless of the value of the XN bit in the
237 		 * translation table.
238 		 *
239 		 * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
240 		 * attribute to figure out the value of the XN bit.
241 		 */
242 		if ((attr & MT_RW) || (attr & MT_EXECUTE_NEVER)) {
243 			desc |= execute_never_mask;
244 		}
245 
246 		if (mem_type == MT_MEMORY) {
247 			desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH);
248 		} else {
249 			assert(mem_type == MT_NON_CACHEABLE);
250 			desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
251 		}
252 	}
253 
254 	debug_print((mem_type == MT_MEMORY) ? "MEM" :
255 		((mem_type == MT_NON_CACHEABLE) ? "NC" : "DEV"));
256 	debug_print(attr & MT_RW ? "-RW" : "-RO");
257 	debug_print(attr & MT_NS ? "-NS" : "-S");
258 	debug_print(attr & MT_EXECUTE_NEVER ? "-XN" : "-EXEC");
259 	return desc;
260 }
261 
262 /*
263  * Look for the innermost region that contains the area at `base_va` with size
264  * `size`. Populate *attr with the attributes of this region.
265  *
266  * On success, this function returns 0.
267  * If there are partial overlaps (meaning that a smaller size is needed) or if
268  * the region can't be found in the given area, it returns -1. In this case the
269  * value pointed by attr should be ignored by the caller.
270  */
271 static int mmap_region_attr(mmap_region_t *mm, uintptr_t base_va,
272 			    size_t size, unsigned int *attr)
273 {
274 	/* Don't assume that the area is contained in the first region */
275 	int ret = -1;
276 
277 	/*
278 	 * Get attributes from last (innermost) region that contains the
279 	 * requested area. Don't stop as soon as one region doesn't contain it
280 	 * because there may be other internal regions that contain this area:
281 	 *
282 	 * |-----------------------------1-----------------------------|
283 	 * |----2----|     |-------3-------|    |----5----|
284 	 *                   |--4--|
285 	 *
286 	 *                   |---| <- Area we want the attributes of.
287 	 *
288 	 * In this example, the area is contained in regions 1, 3 and 4 but not
289 	 * in region 2. The loop shouldn't stop at region 2 as inner regions
290 	 * have priority over outer regions, it should stop at region 5.
291 	 */
292 	for (;; ++mm) {
293 
294 		if (!mm->size)
295 			return ret; /* Reached end of list */
296 
297 		if (mm->base_va > base_va + size - 1)
298 			return ret; /* Next region is after area so end */
299 
300 		if (mm->base_va + mm->size - 1 < base_va)
301 			continue; /* Next region has already been overtaken */
302 
303 		if (!ret && mm->attr == *attr)
304 			continue; /* Region doesn't override attribs so skip */
305 
306 		if (mm->base_va > base_va ||
307 			mm->base_va + mm->size - 1 < base_va + size - 1)
308 			return -1; /* Region doesn't fully cover our area */
309 
310 		*attr = mm->attr;
311 		ret = 0;
312 	}
313 	return ret;
314 }
315 
316 static mmap_region_t *init_xlation_table_inner(mmap_region_t *mm,
317 					uintptr_t base_va,
318 					uint64_t *table,
319 					unsigned int level)
320 {
321 	assert(level >= XLAT_TABLE_LEVEL_MIN && level <= XLAT_TABLE_LEVEL_MAX);
322 
323 	unsigned int level_size_shift =
324 		       L0_XLAT_ADDRESS_SHIFT - level * XLAT_TABLE_ENTRIES_SHIFT;
325 	u_register_t level_size = (u_register_t)1 << level_size_shift;
326 	u_register_t level_index_mask =
327 		((u_register_t)XLAT_TABLE_ENTRIES_MASK) << level_size_shift;
328 
329 	debug_print("New xlat table:\n");
330 
331 	do  {
332 		uint64_t desc = UNSET_DESC;
333 
334 		if (!mm->size) {
335 			/* Done mapping regions; finish zeroing the table */
336 			desc = INVALID_DESC;
337 		} else if (mm->base_va + mm->size - 1 < base_va) {
338 			/* This area is after the region so get next region */
339 			++mm;
340 			continue;
341 		}
342 
343 		debug_print("%s VA:%p size:0x%llx ", get_level_spacer(level),
344 			(void *)base_va, (unsigned long long)level_size);
345 
346 		if (mm->base_va > base_va + level_size - 1) {
347 			/* Next region is after this area. Nothing to map yet */
348 			desc = INVALID_DESC;
349 		/* Make sure that the current level allows block descriptors */
350 		} else if (level >= XLAT_BLOCK_LEVEL_MIN) {
351 			/*
352 			 * Try to get attributes of this area. It will fail if
353 			 * there are partially overlapping regions. On success,
354 			 * it will return the innermost region's attributes.
355 			 */
356 			unsigned int attr;
357 			int r = mmap_region_attr(mm, base_va, level_size, &attr);
358 
359 			if (!r) {
360 				desc = mmap_desc(attr,
361 					base_va - mm->base_va + mm->base_pa,
362 					level);
363 			}
364 		}
365 
366 		if (desc == UNSET_DESC) {
367 			/* Area not covered by a region so need finer table */
368 			uint64_t *new_table = xlat_tables[next_xlat++];
369 			assert(next_xlat <= MAX_XLAT_TABLES);
370 			desc = TABLE_DESC | (uintptr_t)new_table;
371 
372 			/* Recurse to fill in new table */
373 			mm = init_xlation_table_inner(mm, base_va,
374 						new_table, level+1);
375 		}
376 
377 		debug_print("\n");
378 
379 		*table++ = desc;
380 		base_va += level_size;
381 	} while ((base_va & level_index_mask) &&
382 		 (base_va - 1 < PLAT_VIRT_ADDR_SPACE_SIZE - 1));
383 
384 	return mm;
385 }
386 
387 void init_xlation_table(uintptr_t base_va, uint64_t *table,
388 			unsigned int level, uintptr_t *max_va,
389 			unsigned long long *max_pa)
390 {
391 	int el = xlat_arch_current_el();
392 
393 	execute_never_mask = xlat_arch_get_xn_desc(el);
394 
395 	if (el == 3) {
396 		ap1_mask = LOWER_ATTRS(AP_ONE_VA_RANGE_RES1);
397 	} else {
398 		assert(el == 1);
399 		ap1_mask = 0;
400 	}
401 
402 	init_xlation_table_inner(mmap, base_va, table, level);
403 	*max_va = xlat_max_va;
404 	*max_pa = xlat_max_pa;
405 }
406