xref: /rk3399_ARM-atf/lib/xlat_tables/aarch64/xlat_tables.c (revision d6104f5ab4e68f92cf97f6a3e55395c71ed137ac)
1 /*
2  * Copyright (c) 2014-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <cassert.h>
12 #include <common_def.h>
13 #include <platform_def.h>
14 #include <sys/types.h>
15 #include <utils.h>
16 #include <xlat_tables.h>
17 #include "../xlat_tables_private.h"
18 
19 /*
20  * Each platform can define the size of the virtual address space, which is
21  * defined in PLAT_VIRT_ADDR_SPACE_SIZE. TCR.TxSZ is calculated as 64 minus the
22  * width of said address space. The value of TCR.TxSZ must be in the range 16
23  * to 39 [1], which means that the virtual address space width must be in the
24  * range 48 to 25 bits.
25  *
26  * Here we calculate the initial lookup level from the value of
27  * PLAT_VIRT_ADDR_SPACE_SIZE. For a 4 KB page size, level 0 supports virtual
28  * address spaces of widths 48 to 40 bits, level 1 from 39 to 31, and level 2
29  * from 30 to 25. Wider or narrower address spaces are not supported. As a
30  * result, level 3 cannot be used as initial lookup level with 4 KB
31  * granularity. [2]
32  *
33  * For example, for a 35-bit address space (i.e. PLAT_VIRT_ADDR_SPACE_SIZE ==
34  * 1 << 35), TCR.TxSZ will be programmed to (64 - 35) = 29. According to Table
35  * D4-11 in the ARM ARM, the initial lookup level for an address space like
36  * that is 1.
37  *
38  * See the ARMv8-A Architecture Reference Manual (DDI 0487A.j) for more
39  * information:
40  * [1] Page 1730: 'Input address size', 'For all translation stages'.
41  * [2] Section D4.2.5
42  */
43 
44 #if PLAT_VIRT_ADDR_SPACE_SIZE > (1ULL << (64 - TCR_TxSZ_MIN))
45 
46 # error "PLAT_VIRT_ADDR_SPACE_SIZE is too big."
47 
48 #elif PLAT_VIRT_ADDR_SPACE_SIZE > (1ULL << L0_XLAT_ADDRESS_SHIFT)
49 
50 # define XLAT_TABLE_LEVEL_BASE	0
51 # define NUM_BASE_LEVEL_ENTRIES	\
52 		(PLAT_VIRT_ADDR_SPACE_SIZE >> L0_XLAT_ADDRESS_SHIFT)
53 
54 #elif PLAT_VIRT_ADDR_SPACE_SIZE > (1 << L1_XLAT_ADDRESS_SHIFT)
55 
56 # define XLAT_TABLE_LEVEL_BASE	1
57 # define NUM_BASE_LEVEL_ENTRIES	\
58 		(PLAT_VIRT_ADDR_SPACE_SIZE >> L1_XLAT_ADDRESS_SHIFT)
59 
60 #elif PLAT_VIRT_ADDR_SPACE_SIZE >= (1 << (64 - TCR_TxSZ_MAX))
61 
62 # define XLAT_TABLE_LEVEL_BASE	2
63 # define NUM_BASE_LEVEL_ENTRIES	\
64 		(PLAT_VIRT_ADDR_SPACE_SIZE >> L2_XLAT_ADDRESS_SHIFT)
65 
66 #else
67 
68 # error "PLAT_VIRT_ADDR_SPACE_SIZE is too small."
69 
70 #endif
71 
72 static uint64_t base_xlation_table[NUM_BASE_LEVEL_ENTRIES]
73 		__aligned(NUM_BASE_LEVEL_ENTRIES * sizeof(uint64_t));
74 
75 static unsigned long long tcr_ps_bits;
76 
77 static unsigned long long calc_physical_addr_size_bits(
78 					unsigned long long max_addr)
79 {
80 	/* Physical address can't exceed 48 bits */
81 	assert((max_addr & ADDR_MASK_48_TO_63) == 0);
82 
83 	/* 48 bits address */
84 	if (max_addr & ADDR_MASK_44_TO_47)
85 		return TCR_PS_BITS_256TB;
86 
87 	/* 44 bits address */
88 	if (max_addr & ADDR_MASK_42_TO_43)
89 		return TCR_PS_BITS_16TB;
90 
91 	/* 42 bits address */
92 	if (max_addr & ADDR_MASK_40_TO_41)
93 		return TCR_PS_BITS_4TB;
94 
95 	/* 40 bits address */
96 	if (max_addr & ADDR_MASK_36_TO_39)
97 		return TCR_PS_BITS_1TB;
98 
99 	/* 36 bits address */
100 	if (max_addr & ADDR_MASK_32_TO_35)
101 		return TCR_PS_BITS_64GB;
102 
103 	return TCR_PS_BITS_4GB;
104 }
105 
106 #if ENABLE_ASSERTIONS
107 /* Physical Address ranges supported in the AArch64 Memory Model */
108 static const unsigned int pa_range_bits_arr[] = {
109 	PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100,
110 	PARANGE_0101
111 };
112 
113 static unsigned long long get_max_supported_pa(void)
114 {
115 	u_register_t pa_range = read_id_aa64mmfr0_el1() &
116 						ID_AA64MMFR0_EL1_PARANGE_MASK;
117 
118 	/* All other values are reserved */
119 	assert(pa_range < ARRAY_SIZE(pa_range_bits_arr));
120 
121 	return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL;
122 }
123 #endif /* ENABLE_ASSERTIONS */
124 
125 int xlat_arch_current_el(void)
126 {
127 	int el = GET_EL(read_CurrentEl());
128 
129 	assert(el > 0);
130 
131 	return el;
132 }
133 
134 uint64_t xlat_arch_get_xn_desc(int el)
135 {
136 	if (el == 3) {
137 		return UPPER_ATTRS(XN);
138 	} else {
139 		assert(el == 1);
140 		return UPPER_ATTRS(PXN);
141 	}
142 }
143 
144 void init_xlat_tables(void)
145 {
146 	unsigned long long max_pa;
147 	uintptr_t max_va;
148 	print_mmap();
149 	init_xlation_table(0, base_xlation_table, XLAT_TABLE_LEVEL_BASE,
150 			   &max_va, &max_pa);
151 
152 	assert(max_va <= PLAT_VIRT_ADDR_SPACE_SIZE - 1);
153 	assert(max_pa <= PLAT_PHY_ADDR_SPACE_SIZE - 1);
154 	assert((PLAT_PHY_ADDR_SPACE_SIZE - 1) <= get_max_supported_pa());
155 
156 	tcr_ps_bits = calc_physical_addr_size_bits(max_pa);
157 }
158 
159 /*******************************************************************************
160  * Macro generating the code for the function enabling the MMU in the given
161  * exception level, assuming that the pagetables have already been created.
162  *
163  *   _el:		Exception level at which the function will run
164  *   _tcr_extra:	Extra bits to set in the TCR register. This mask will
165  *			be OR'ed with the default TCR value.
166  *   _tlbi_fct:		Function to invalidate the TLBs at the current
167  *			exception level
168  ******************************************************************************/
169 #define DEFINE_ENABLE_MMU_EL(_el, _tcr_extra, _tlbi_fct)		\
170 	void enable_mmu_el##_el(unsigned int flags)				\
171 	{								\
172 		uint64_t mair, tcr, ttbr;				\
173 		uint32_t sctlr;						\
174 									\
175 		assert(IS_IN_EL(_el));					\
176 		assert((read_sctlr_el##_el() & SCTLR_M_BIT) == 0);	\
177 									\
178 		/* Set attributes in the right indices of the MAIR */	\
179 		mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);	\
180 		mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR,		\
181 				ATTR_IWBWA_OWBWA_NTR_INDEX);		\
182 		mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE,		\
183 				ATTR_NON_CACHEABLE_INDEX);		\
184 		write_mair_el##_el(mair);				\
185 									\
186 		/* Invalidate TLBs at the current exception level */	\
187 		_tlbi_fct();						\
188 									\
189 		/* Set TCR bits as well. */				\
190 		/* Set T0SZ to (64 - width of virtual address space) */	\
191 		if (flags & XLAT_TABLE_NC) {				\
192 			/* Inner & outer non-cacheable non-shareable. */\
193 			tcr = TCR_SH_NON_SHAREABLE |			\
194 				TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC |	\
195 				(64 - __builtin_ctzl(PLAT_VIRT_ADDR_SPACE_SIZE));\
196 		} else {						\
197 			/* Inner & outer WBWA & shareable. */		\
198 			tcr = TCR_SH_INNER_SHAREABLE |			\
199 				TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA |	\
200 				(64 - __builtin_ctzl(PLAT_VIRT_ADDR_SPACE_SIZE));\
201 		}							\
202 		tcr |= _tcr_extra;					\
203 		write_tcr_el##_el(tcr);					\
204 									\
205 		/* Set TTBR bits as well */				\
206 		ttbr = (uint64_t) base_xlation_table;			\
207 		write_ttbr0_el##_el(ttbr);				\
208 									\
209 		/* Ensure all translation table writes have drained */	\
210 		/* into memory, the TLB invalidation is complete, */	\
211 		/* and translation register writes are committed */	\
212 		/* before enabling the MMU */				\
213 		dsbish();						\
214 		isb();							\
215 									\
216 		sctlr = read_sctlr_el##_el();				\
217 		sctlr |= SCTLR_WXN_BIT | SCTLR_M_BIT;			\
218 									\
219 		if (flags & DISABLE_DCACHE)				\
220 			sctlr &= ~SCTLR_C_BIT;				\
221 		else							\
222 			sctlr |= SCTLR_C_BIT;				\
223 									\
224 		write_sctlr_el##_el(sctlr);				\
225 									\
226 		/* Ensure the MMU enable takes effect immediately */	\
227 		isb();							\
228 	}
229 
230 /* Define EL1 and EL3 variants of the function enabling the MMU */
231 DEFINE_ENABLE_MMU_EL(1,
232 		(tcr_ps_bits << TCR_EL1_IPS_SHIFT),
233 		tlbivmalle1)
234 DEFINE_ENABLE_MMU_EL(3,
235 		TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT),
236 		tlbialle3)
237